Most cited article - PubMed ID 28948814
Prenatal exposure to bisphenols and parabens and impacts on human physiology
The aim of the study was to examine the potential impacts of bisphenol A (BPA) and its analogues BPB, BPF, and BPS on mice TM3 Leydig cells, with respect to basal cell viability parameters such as metabolic activity, cell membrane integrity, and lysosomal activity after 48-h exposure. In addition, monitoring of potential bisphenol´s actions included evaluation of ROS production and gap junctional intercellular communication (GJIC) complemented by determination of testosterone secretion. Obtained results revealed significant inhibition in mitochondrial activity started at 10 microg/ml of bisphenols after 48-h exposure. Cell membrane integrity was significantly decreased at 5 microg/ml of BPA and BPF and 10, 25, and 50 microg/ml of BPA and BPS. The lysosomal activity was significantly affected at 10, 25, and 50 microg/ml of applied bisphenols. A significant overproduction of ROS was recorded mainly at 5 and 10 microg/ml of tested compounds. In addition, significant inhibition of GJIC was observed at 5 microg/ml of BPB followed by a progressive decline at higher applied doses. In the case of testosterone production, a significant decline was confirmed at 10, 25 and 50 microg/ml.
- MeSH
- Benzhydryl Compounds metabolism MeSH
- Endocrine Disruptors * pharmacology MeSH
- Leydig Cells * MeSH
- Mice MeSH
- Reactive Oxygen Species metabolism MeSH
- Sulfones pharmacology MeSH
- Testosterone metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Benzhydryl Compounds MeSH
- bisphenol A MeSH Browser
- Endocrine Disruptors * MeSH
- Reactive Oxygen Species MeSH
- Sulfones MeSH
- Testosterone MeSH
Bisphenol A (BPA)-based monomers are commonly contained in dental resin-based materials. As BPA is an endocrine disruptor, its long-term release from restorative composites and resin-modified glass ionomers (RM-GICs) under two polymerization conditions was measured in this study. Specimens of two conventional composites containing BPA-based monomers, two "BPA-free" composites, and two RM-GICs were polymerized from one side for 20 s at 1300 mW/cm2 or for 5 s at 3000 mW/cm2. The amounts of BPA released in artificial saliva and methanol after 1, 4, 9, 16, 35, 65, 130, and 260 days were measured using liquid chromatography-tandem mass spectrometry. The highest amounts of BPA were released from conventional composites, followed by RM-GICs, while the least was released from "BPA-free" composites. Amounts of released BPA were significantly higher in methanol and decreased gradually after the first day. Fast polymerization (5 s at 3000 mW/cm2) resulted in a significantly higher release of BPA after 1 day, but the effect of polymerization conditions was not significant overall. In conclusion, fast polymerization increased the initial release of BPA, but the released amounts were significantly lower than the current tolerable daily intake (4 μg/kg body weight/day) even in methanol, representing the worst-case scenario of BPA release.
- Keywords
- Bis-GMA, bisphenol A, glass ionomer cements, light-curing, liquid chromatography, mass spectrometry, resin composite,
- Publication type
- Journal Article MeSH
Nickel is a ubiquitous environmental pollutant, which has various effects on reproductive endocrinology. In this study, human adrenocortical carcinoma (NCI-H295R) cell line was used as an in vitro biological model to study the effect of nickel chloride (NiCl2) on the viability and steroidogenesis. The cells were exposed to different concentrations (3.90; 7.80; 15.60; 31.20; 62.50; 125; 250 and 500 microM) of NiCl2 and compared with control group (culture medium without NiCl2). The cell viability was measured by the metabolic activity assay. Production of sexual steroid hormones was quantified by enzyme linked immunosorbent assay. Following 48 h culture of the cells in the presence of NiCl2 a dose-dependent depletion of progesterone release was observed even at the lower concentrations. In fact, lower levels of progesterone were detected in groups with higher doses (>/=125 microM) of NiCl2 (P<0.01), which also elicited cytotoxic action. A more prominent decrease in testosterone production (P<0.01) was also noted in comparison to that of progesterone. On the other hand, the release of 17beta-estradiol was substantially increased at low concentrations (3.90 to 62.50 microM) of NiCl2. The cell viability remained relatively unaltered up to 125 microM (P>0.05) and slightly decreased from 250 microM of NiCl2 (P<0.05). Our results indicate endocrine disruptive effect of NiCl2 on the release of progesterone and testosterone in the NCI-H295R cell line. Although no detrimental effect of NiCl2 (=62.50 microM) could be found on 17beta-estradiol production, its toxicity may reflect at other points of the steroidogenic pathway.
- MeSH
- Adrenocortical Carcinoma metabolism pathology MeSH
- Adrenal Cortex Neoplasms metabolism pathology MeSH
- Endocrine Disruptors pharmacology MeSH
- Estradiol metabolism MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Nickel pharmacology MeSH
- Progesterone metabolism MeSH
- In Vitro Techniques MeSH
- Testosterone metabolism MeSH
- Cell Survival MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Endocrine Disruptors MeSH
- Estradiol MeSH
- Nickel MeSH
- Progesterone MeSH
- Testosterone MeSH
Anthropogenic environmental pollutants affect many physiological, biochemical, and endocrine actions as reproduction, metabolism, immunity, behavior and as such can interfere with any aspect of hormone action. Microbiota and their genes, microbiome, a large body of microorganisms, first of all bacteria and co-existing in the host´s gut, are now believed to be autonomous endocrine organ, participating at overall endocrine, neuroendocrine and immunoendocrine regulations. While an extensive literature is available on the physiological and pathological aspects of both players, information about their mutual relationships is scarce. In the review we attempted to show various examples where both, endocrine disruptors and microbiota are meeting and can act cooperatively or in opposition and to show the mechanism, if known, staying behind these actions.
- MeSH
- Endocrine Disruptors pharmacology MeSH
- Bacterial Physiological Phenomena drug effects MeSH
- Gastrointestinal Tract drug effects microbiology MeSH
- Environmental Pollutants pharmacology MeSH
- Humans MeSH
- Gastrointestinal Microbiome drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Endocrine Disruptors MeSH
- Environmental Pollutants MeSH
Dental composite materials often contain monomers with bisphenol A (BPA) structure in their molecules, e.g. bisphenol-A glycidyl dimethacrylate (Bis-GMA). In this study, it was examined whether dental restorative composites could be a low-dose source of BPA or alternative bisphenols, which are known to have endocrine-disrupting effects. Bis-GMA-containing composites Charisma Classic (CC) and Filtek Ultimate Universal Restorative (FU) and "BPA-free" Charisma Diamond (CD) and Admira Fusion (AF) were examined. Specimens (diameter 6 mm, height 2 mm, n=5) were light-cured from one side for 20 s and stored at 37 °C in methanol which was periodically changed over 130 days to determine the kinetics of BPA release. BPA concentrations were measured using a dansyl chloride derivatization method with liquid chromatography - tandem mass spectrometry detection. The amounts of BPA were expressed in nanograms per gram of composite (ng/g). BPA release from Bis-GMA-containing CC and FU was significantly higher compared to "BPA-free" CD and AF. The highest 1-day release was detected with FU (15.4+/-0.8 ng/g), followed by CC (9.1+/-1.1 ng/g), AF (2.1+/-1.3 ng/g), and CD (1.6+/-0.8 ng/g), and the release gradually decreased over the examined period. Detected values were several orders of magnitude below the tolerable daily intake (4 microg/kg body weight/day). Alternative bisphenols were not detected. BPA was released even from "BPA-free" composites, although in significantly lower amounts than from Bis-GMA-containing composites. Despite incubation in methanol, detected amounts of BPA were substantially lower than current limits suggesting that dental composites should not pose a health risk if adequately polymerized.
- MeSH
- Benzhydryl Compounds analysis MeSH
- Bisphenol A-Glycidyl Methacrylate chemistry MeSH
- Phenols analysis MeSH
- Humans MeSH
- Methacrylates chemistry MeSH
- Siloxanes chemistry MeSH
- Composite Resins chemistry MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Dental Materials chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- admira MeSH Browser
- Benzhydryl Compounds MeSH
- Bisphenol A-Glycidyl Methacrylate MeSH
- bisphenol A MeSH Browser
- Charisma composite resin MeSH Browser
- Phenols MeSH
- Methacrylates MeSH
- Siloxanes MeSH
- Composite Resins MeSH
- Dental Materials MeSH