Nejvíce citovaný článek - PubMed ID 29084245
The molecular pathology of hemolytic disease of the fetus and newborn (HDFN) is determined by different RHD, RHCE, and KEL genotypes and by blood group incompatibility between the mother and fetus that is caused by erythrocyte antigen presence/absence on the cell surface. In the Czech Republic, clinically significant antierythrocyte alloantibodies include anti-D, anti-K, anti C/c, and anti-E. Deletion of the RHD gene and then three single nucleotide polymorphisms in the RHCE and KEL genes (rs676785, rs609320, and rs8176058) are the most common. The aim of this study is to develop effective and precise monitoring of fetal genotypes from maternal plasma of these polymorphisms using droplet digital (dd)PCR. Fifty-three plasma DNA samples (from 10 to 18 weeks of gestation) were analyzed (10 RHD, 33 RHCE, and 10 KEL). The ddPCR methodology was validated on the basis of the already elaborated and established method of minisequencing and real-time PCR and with newborn phenotype confirmation. The results of ddPCR were in 100% agreement with minisequencing and real-time PCR and also with newborn phenotype. ddPCR can fully replace the reliable but more time-consuming method of minisequencing and real-time PCR RHD examination. Accurate and rapid noninvasive fetal genotyping minimizes the possibility of HDFN developing.
- Klíčová slova
- KEL, RHCE, RHD, blood group incompatibility, cell-free fetal DNA, droplet digital PCR, hemolytic disease of fetus and newborn, noninvasive fetal genotyping,
- Publikační typ
- časopisecké články MeSH
In families with X-linked recessive diseases, foetal sex is determined prenatally by detection of Y-chromosomal sequences in cell-free foetal DNA (cffDNA) in maternal plasma. The same procedure is used to confirm the cffDNA presence during non-invasive prenatal RhD incompatibility testing but there are no generally accepted markers for the detection of cffDNA fraction in female-foetus bearing pregnancies. We present a methodology allowing the detection of paternal X-chromosomal alleles on maternal background and the confirmation of female sex of the foetus by positive amplification signals. Using digital droplet PCR (ddPCR) we examined X-chromosomal INDEL (insertion/deletion) polymorphisms: rs2307932, rs16397, rs16637, rs3048996, rs16680 in buccal swabs of 50 females to obtain the population data. For all INDELs, we determined the limits of detection for each ddPCR assay. We examined the cffDNA from 63 pregnant women bearing Y-chromosome negative foetuses. The analysis with this set of INDELs led to informative results in 66.67% of examined female-foetus bearing pregnancies. Although the population data predicted higher informativity (74%) we provided the proof of principle of this methodology. We successfully applied this methodology in prenatal diagnostics in a family with Wiscott-Aldrich syndrome and in pregnancies tested for the risk of RhD incompatibility.
- MeSH
- analýza určování pohlaví metody MeSH
- dospělí MeSH
- genetické testování MeSH
- lidé MeSH
- lidské chromozomy X genetika MeSH
- mutace INDEL * MeSH
- plod chemie metabolismus MeSH
- polymerázová řetězová reakce metody MeSH
- polymorfismus genetický * MeSH
- prenatální diagnóza metody MeSH
- těhotenství MeSH
- volné cirkulující nukleové kyseliny analýza genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- volné cirkulující nukleové kyseliny MeSH