Nejvíce citovaný článek - PubMed ID 29149215
During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.
- Klíčová slova
- Chiroptera, evolution, health, lyssavirus phylogroups, transition routes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS: We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS: The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
- Klíčová slova
- Antiviral state, Chiroptera, EBLV-1, Heat shock proteins (HSPs), Hibernation, In vitro infection model, Innate immunity, Lyssaviruses, Myotis myotis, Transcriptome,
- MeSH
- Chiroptera * fyziologie MeSH
- hibernace * MeSH
- Lyssavirus * MeSH
- transkriptom MeSH
- viry * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Palearctic bats host a diversity of lyssaviruses, though not the classical rabies virus (RABV). As surveillance for bat rabies over the Palearctic area covering Central and Eastern Europe and Siberian regions of Russia has been irregular, we lack data on geographic and seasonal patterns of the infection. RESULTS: To address this, we undertook serological testing, using non-lethally sampled blood, on 1027 bats of 25 species in Bulgaria, the Czech Republic, Poland, Russia and Slovenia between 2014 and 2018. The indirect enzyme-linked immunosorbent assay (ELISA) detected rabies virus anti-glycoprotein antibodies in 33 bats, giving an overall seroprevalence of 3.2%. Bat species exceeding the seroconversion threshold included Myotis blythii, Myotis gracilis, Myotis petax, Myotis myotis, Murina hilgendorfi, Rhinolophus ferrumequinum and Vespertilio murinus. While Myotis species (84.8%) and adult females (48.5%) dominated in seropositive bats, juveniles of both sexes showed no difference in seroprevalence. Higher numbers tested positive when sampled during the active season (10.5%), as compared with the hibernation period (0.9%). Bat rabies seroprevalence was significantly higher in natural habitats (4.0%) compared with synanthropic roosts (1.2%). Importantly, in 2018, we recorded 73.1% seroprevalence in a cave containing a M. blythii maternity colony in the Altai Krai of Russia. CONCLUSIONS: Identification of such "hotspots" of non-RABV lyssavirus circulation not only provides important information for public health protection, it can also guide research activities aimed at more in-depth bat rabies studies.
- Klíčová slova
- Chiroptera, Europe, Siberia, blood samples, rabies, seroprevalence,
- MeSH
- Chiroptera virologie MeSH
- ekosystém MeSH
- infekce viry z čeledi Rhabdoviridae epidemiologie MeSH
- jeskyně MeSH
- Lyssavirus izolace a purifikace MeSH
- protilátky virové krev MeSH
- roční období MeSH
- séroepidemiologické studie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Rusko epidemiologie MeSH
- Názvy látek
- protilátky virové MeSH