Most cited article - PubMed ID 29163419
Reconstruction of Diverse Verrucomicrobial Genomes from Metagenome Datasets of Freshwater Reservoirs
Rhodopsin photosystems convert light energy into electrochemical gradients used by the cell to produce ATP, or for other energy-demanding processes. While these photosystems are widespread in the ocean and have been identified in diverse microbial taxonomic groups, their physiological role in vivo has only been studied in few marine bacterial strains. Recent metagenomic studies revealed the presence of rhodopsin genes in the understudied Verrucomicrobiota phylum, yet their distribution within different Verrucomicrobiota lineages, their diversity, and function remain unknown. In this study, we show that more than 7% of Verrucomicrobiota genomes (n = 2916) harbor rhodopsins of different types. Furthermore, we describe the first two cultivated rhodopsin-containing strains, one harboring a proteorhodopsin gene and the other a xanthorhodopsin gene, allowing us to characterize their physiology under laboratory-controlled conditions. The strains were isolated in a previous study from the Eastern Mediterranean Sea and read mapping of 16S rRNA gene amplicons showed the highest abundances of these strains at the deep chlorophyll maximum (source of their inoculum) in winter and spring, with a substantial decrease in summer. Genomic analysis of the isolates suggests that motility and degradation of organic material, both energy demanding functions, may be supported by rhodopsin phototrophy in Verrucomicrobiota. Under culture conditions, we show that rhodopsin phototrophy occurs under carbon starvation, with light-mediated energy generation supporting sugar transport into the cells. Overall, this study suggests that photoheterotrophic Verrucomicrobiota may occupy an ecological niche where energy harvested from light enables bacterial motility toward organic matter and supports nutrient uptake.
- MeSH
- Bacteria * genetics MeSH
- Biological Transport MeSH
- Phototrophic Processes MeSH
- Phylogeny MeSH
- Rhodopsins, Microbial genetics metabolism MeSH
- RNA, Ribosomal, 16S genetics metabolism MeSH
- Rhodopsin * genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Rhodopsins, Microbial MeSH
- RNA, Ribosomal, 16S MeSH
- Rhodopsin * MeSH
Small lakes and ponds occupy an enormous surface area of inland freshwater and represent an important terrestrial-water interface. Disturbances caused by extreme weather events can have substantial effects on these ecosystems. Here, we analysed the dynamics of nutrients and the entire plankton community in two flood events and afterwards, when quasi-stable conditions were established, to investigate the effect of such disturbances on a small forest pond. We show that floodings result in repeated washout of resident organisms and hundredfold increases in nutrient load. Despite this, the microbial community recovers to a predisturbance state within two weeks of flooding through four well-defined succession phases. Reassembly of phytoplankton and especially zooplankton takes up to two times longer and features repetitive and adaptive patterns. Release of dissolved nutrients from the pond is associated with inflow rates and community recovery, and returns to predisturbance levels before microbial compositions recover. Our findings shed light on the mechanisms underlying functional resilience of small waterbodies and are relevant to global change-induced increases in weather extremes.
- MeSH
- Rain * MeSH
- Extreme Weather * MeSH
- Forests MeSH
- Microbiota * MeSH
- Plankton growth & development MeSH
- Food Chain MeSH
- Rivers chemistry microbiology MeSH
- Ponds chemistry microbiology MeSH
- Fresh Water chemistry microbiology MeSH
- Floods MeSH
- Nutrients analysis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Freshwater environments teem with microbes that do not have counterparts in culture collections or genetic data available in genomic repositories. Currently, our apprehension of evolutionary ecology of freshwater bacteria is hampered by the difficulty to establish organism models for the most representative clades. To circumvent the bottlenecks inherent to the cultivation-based techniques, we applied ecogenomics approaches in order to unravel the evolutionary history and the processes that drive genome architecture in hallmark freshwater lineages from the phylum Planctomycetes. The evolutionary history inferences showed that sediment/soil Planctomycetes transitioned to aquatic environments, where they gave rise to new freshwater-specific clades. The most abundant lineage was found to have the most specialised lifestyle (increased regulatory genetic circuits, metabolism tuned for mineralization of proteinaceous sinking aggregates, psychrotrophic behaviour) within the analysed clades and to harbour the smallest freshwater Planctomycetes genomes, highlighting a genomic architecture shaped by niche-directed evolution (through loss of functions and pathways not needed in the newly acquired freshwater niche).
The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers' removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
- MeSH
- Bacteria genetics growth & development MeSH
- Microbiota MeSH
- Food Chain MeSH
- Reference Standards MeSH
- Sequence Analysis, DNA standards MeSH
- Fresh Water microbiology MeSH
- High-Throughput Nucleotide Sequencing standards MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Representatives of the phylum Chloroflexi, though reportedly highly abundant in the extensive deep water habitats of both marine (SAR202 up to 30% of total prokaryotes) and freshwater (CL500-11 up to 26% of total prokaryotes), remain uncultivated and uncharacterized. There are few metagenomic studies on marine Chloroflexi representatives, while the pelagic freshwater Chloroflexi community is largely unknown except for a single metagenome-assembled genome of CL500-11. RESULTS: Here, we provide the first extensive examination of the community composition of this cosmopolitan phylum in a range of pelagic habitats (176 datasets) and highlight the impact of salinity and depth on their phylogenomic composition. Reconstructed genomes (53 in total) provide a perspective on the phylogeny, metabolism, and distribution of three novel classes and two family-level taxa within the phylum Chloroflexi. We unraveled a remarkable genomic diversity of pelagic freshwater Chloroflexi representatives that thrive not only in the hypolimnion as previously suspected, but also in the epilimnion. Our results suggest that the lake hypolimnion provides a globally stable habitat reflected in lower species diversity among hypolimnion-specific CL500-11 and TK10 clusters in distantly related lakes compared to a higher species diversity of the epilimnion-specific SL56 cluster. Cell volume analyses show that the CL500-11 are among the largest prokaryotic cells in the water column of deep lakes and with a biomass to abundance ratio of two they significantly contribute to the deep lake carbon flow. Metabolic insights indicate participation of JG30-KF-CM66 representatives in the global cobalamin production via cobinamide to cobalamin salvage pathway. CONCLUSIONS: Extending phylogenomic comparisons to brackish and marine habitats suggests salinity as the major influencer of the community composition of the deep-dwelling Chloroflexi in marine (SAR202) and freshwater (CL500-11) habitats as both counterparts thrive in intermediate brackish salinity; however, freshwater habitats harbor the most phylogenetically diverse community of pelagic Chloroflexi representatives that reside both in epi- and hypolimnion.
- Keywords
- CARD-FISH, Chloroflexi, Freshwater ecology, Metagenomics,
- MeSH
- Chloroflexi classification genetics isolation & purification MeSH
- DNA, Bacterial genetics MeSH
- Ecosystem MeSH
- Phylogeny MeSH
- Genome, Bacterial genetics MeSH
- Lakes microbiology MeSH
- Metagenome genetics MeSH
- Plankton classification genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Salinity MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- DNA, Bacterial MeSH
- RNA, Ribosomal, 16S MeSH