Most cited article - PubMed ID 29176711
Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating
The importance of the quantitative description of protein unfolding and aggregation for the rational design of stability or understanding the molecular basis of protein misfolding diseases is well established. Protein thermostability is typically assessed by calorimetric or spectroscopic techniques that monitor different complementary signals during unfolding. The CalFitter webserver has already proved integral to deriving invaluable energy parameters by global data analysis. Here, we introduce CalFitter 2.0, which newly incorporates singular value decomposition (SVD) of multi-wavelength spectral datasets into the global fitting pipeline. Processed time- or temperature-evolved SVD components can now be fitted together with other experimental data types. Moreover, deconvoluted basis spectra provide spectral fingerprints of relevant macrostates populated during unfolding, which greatly enriches the information gains of the CalFitter output. The SVD analysis is fully automated in a highly interactive module, providing access to the results to users without any prior knowledge of the underlying mathematics. Additionally, a novel data uploading wizard has been implemented to facilitate rapid and easy uploading of multiple datasets. Together, the newly introduced changes significantly improve the user experience, making this software a unique, robust, and interactive platform for the analysis of protein thermal denaturation data. The webserver is freely accessible at https://loschmidt.chemi.muni.cz/calfitter.
- MeSH
- Protein Denaturation MeSH
- Proteins * chemistry MeSH
- Protein Unfolding * MeSH
- Software MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Proteins * MeSH
Despite significant advances in the understanding of protein structure-function relationships, revealing protein folding pathways still poses a challenge due to a limited number of relevant experimental tools. Widely-used experimental techniques, such as calorimetry or spectroscopy, critically depend on a proper data analysis. Currently, there are only separate data analysis tools available for each type of experiment with a limited model selection. To address this problem, we have developed the CalFitter web server to be a unified platform for comprehensive data fitting and analysis of protein thermal denaturation data. The server allows simultaneous global data fitting using any combination of input data types and offers 12 protein unfolding pathway models for selection, including irreversible transitions often missing from other tools. The data fitting produces optimal parameter values, their confidence intervals, and statistical information to define unfolding pathways. The server provides an interactive and easy-to-use interface that allows users to directly analyse input datasets and simulate modelled output based on the model parameters. CalFitter web server is available free at https://loschmidt.chemi.muni.cz/calfitter/.