Nejvíce citovaný článek - PubMed ID 29202873
Gene expression in the chicken caecum is dependent on microbiota composition
Chickens represent one of the most important sources of animal protein for the human population. However, chickens also represent one of the most important reservoirs of Salmonella for humans. Measures to decrease the Salmonella incidence in chickens are therefore continuously sought. In this study, we tested feed supplementation with a mixture of C1 to C12 monoacylglycerides. At 0.7 and 1.5 kg per ton of feed, such supplementation significantly decreased Salmonella counts in the caecum but not in the liver. The chickens were infected on day 4 and the protective effect in the caecum was recorded on day 22 and 23 of life. Supplementation also decreased the inflammatory response of chickens to Salmonella infection determined by avidin, SAA, ExFABP, MMP7, IL1β, IL4I and MRP126 gene expression but did not affect immunoglobulin expression in the caecum. C1 to C12 monoacylglycerides can be used as a feed supplement which, if continuously provided in feed, decrease Salmonella counts in chickens just prior slaughter.
- Klíčová slova
- Caecum, Chicken, Monoacylglyceride, Salmonella,
- MeSH
- cékum mikrobiologie MeSH
- dieta veterinární MeSH
- krmivo pro zvířata analýza MeSH
- kur domácí * MeSH
- monoglyceridy * aplikace a dávkování metabolismus MeSH
- náhodné rozdělení MeSH
- nemoci drůbeže * imunologie mikrobiologie prevence a kontrola MeSH
- odolnost vůči nemocem * účinky léků MeSH
- potravní doplňky analýza MeSH
- Salmonella enteritidis * fyziologie MeSH
- salmonelová infekce u zvířat * imunologie mikrobiologie prevence a kontrola MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- monoglyceridy * MeSH
The chicken caecum is colonised by hundreds of different bacterial species. Which of these are targeted by immunoglobulins and how immunoglobulin expression shapes chicken caecal microbiota has been addressed in this study. Using cell sorting followed by sequencing of V3/V4 variable region of 16S rRNA, bacterial species with increased or decreased immunoglobulin coating were determined. Next, we determined also caecal microbiota composition in immunoglobulin knockout chickens. We found that immunoglobulin coating was common and major taxa were coated with immunoglobulins. Similarly, more taxa required immunoglobulin production for caecum colonisation compared to those which became abundant in immunoglobulin-deficient chickens. Taxa with low immunoglobulin coating such as Lactobacillus, Blautia, [Eubacterium] hallii, Megamonas, Fusobacterium and Desulfovibrio all encode S-layer proteins which may reduce interactions with immunoglobulins. Although there were taxa which overgrew in Ig-deficient chickens (e.g. Akkermansia) indicating immunoglobulin production acted to exclude them from the chicken caecum, in most of the cases, immunoglobulin production more likely contributed to fixing the desired microbiota in the chicken caecum.
- MeSH
- Bacteria klasifikace genetika MeSH
- cékum * mikrobiologie MeSH
- imunoglobuliny * MeSH
- kur domácí * mikrobiologie imunologie MeSH
- RNA ribozomální 16S * genetika MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoglobuliny * MeSH
- RNA ribozomální 16S * MeSH
Sections of chicken gut differ in many aspects, e.g., the passage of digesta (continuous vs. discontinuous), the concentration of oxygen, and the density of colonising microbiota. Using an unbiased LC-MS/MS protocol, we compared protein expression in 18 ileal and 57 caecal tissue samples that originated from 7-day old ISA brown chickens. We found that proteins specific to the ileum were either structural (e.g., 3 actin isoforms, villin, or myosin 1A), or those required for nutrient digestion (e.g., sucrose isomaltase, maltase-glucoamylase, peptidase D) and absorption (e.g., fatty acid-binding protein 2 and 6 or bile acid-CoA:amino acid N-acyltransferase). On the other hand, proteins characteristic of the caecum were involved in sensing and limiting the consequences of oxidative stress (e.g., thioredoxin, peroxiredoxin 6), cell adhesion, and motility associated with wound healing (e.g., fibronectin 1, desmoyokin). These mechanisms are coupled with the activation of mechanisms suppressing the inflammatory response (galectin 1). Rather prominent were also expressions of proteins linked to hydrogen sulphide metabolism in caecum represented by cystathionin beta synthase, selenium-binding protein 1, mercaptopyruvate sulphurtransferase, and thiosulphate sulphurtransferase. Higher mRNA expression of nuclear factor, erythroid 2-like 2, the main oxidative stress transcriptional factor in caecum, further supported our observations.
- Klíčová slova
- caecum, chicken, hydrogen sulphide, ileum, stress response, wound healing,
- Publikační typ
- časopisecké články MeSH