Super- and low-shedding phenomena have been observed in genetically homogeneous hosts infected by a single bacterial strain. To decipher the mechanisms underlying these phenotypes, we conducted an experiment with chicks infected with Salmonella Enteritidis in a non-sterile isolator, which prevents bacterial transmission between animals while allowing the development of the gut microbiota. We investigated the impact of four commensal bacteria called Mix4, inoculated at hatching, on chicken systemic immune response and intestinal microbiota composition and functions, before and after Salmonella infection. Our results revealed that these phenotypes were not linked to changes in cell invasion capacity of bacteria during infection. Mix4 inoculation had both short- and long-term effects on immune response and microbiota and promoted the low-shedder phenotype. Kinetic analysis revealed that Mix4 activated immune response from day 4, which modified the microbiota on day 6. This change promotes a more fermentative microbiota, using the aromatic compounds degradation pathway, which inhibited Salmonella colonization by day 11 and beyond. In contrast, control animals exhibited a delayed TNF-driven pro-inflammatory response and developed a microbiota using anaerobic respiration, which facilitates Salmonella colonization and growth. This strategy offers promising opportunities to strengthen the barrier effect against Salmonella and possibly other pathogens.
- Klíčová slova
- Salmonella, carrier-state, chicken, excretion, immune response, microbiota, super-shedder, virulence,
- MeSH
- Bacteria * imunologie klasifikace genetika MeSH
- kur domácí imunologie mikrobiologie MeSH
- nemoci drůbeže * mikrobiologie imunologie prevence a kontrola MeSH
- Salmonella enteritidis * imunologie růst a vývoj fyziologie MeSH
- salmonelová infekce u zvířat * imunologie mikrobiologie prevence a kontrola MeSH
- střevní mikroflóra * imunologie MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The chicken caecum is colonised by hundreds of different bacterial species. Which of these are targeted by immunoglobulins and how immunoglobulin expression shapes chicken caecal microbiota has been addressed in this study. Using cell sorting followed by sequencing of V3/V4 variable region of 16S rRNA, bacterial species with increased or decreased immunoglobulin coating were determined. Next, we determined also caecal microbiota composition in immunoglobulin knockout chickens. We found that immunoglobulin coating was common and major taxa were coated with immunoglobulins. Similarly, more taxa required immunoglobulin production for caecum colonisation compared to those which became abundant in immunoglobulin-deficient chickens. Taxa with low immunoglobulin coating such as Lactobacillus, Blautia, [Eubacterium] hallii, Megamonas, Fusobacterium and Desulfovibrio all encode S-layer proteins which may reduce interactions with immunoglobulins. Although there were taxa which overgrew in Ig-deficient chickens (e.g. Akkermansia) indicating immunoglobulin production acted to exclude them from the chicken caecum, in most of the cases, immunoglobulin production more likely contributed to fixing the desired microbiota in the chicken caecum.
- MeSH
- Bacteria klasifikace genetika MeSH
- cékum * mikrobiologie MeSH
- imunoglobuliny * MeSH
- kur domácí * mikrobiologie imunologie MeSH
- RNA ribozomální 16S * genetika MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoglobuliny * MeSH
- RNA ribozomální 16S * MeSH
The widespread use of antibiotics in the poultry industry as growth promoters has led to the emergence of bacterial resistance, which poses a significant health risk to humans and animals. Substances of natural origin, such as probiotic bacteria and humic substances, can be a promising solution. The aim of this experiment was to study the effect of the administration of a probiotic strain of Limosilactobacillus fermentum 2i3 and/or a new formula of humic substances specifically designed for detoxification on the production parameters, including gene expression of myogenic growth factors and selected parameters of the immune response. We found that production parameters such as feed conversion ratio and weekly weight gain, as well as gene expression of mucin-2 and immunoglobulin A, were positively influenced mainly by the administration of L. fermentum 2i3. Similarly, the percentage of active phagocytes and their absorption capacity as well as the proportions of CD8+ and CD4+CD8+ T-lymphocyte subpopulations were significantly increased. The addition of humic substances, either alone or in combination with probiotics, significantly reduced the aforementioned parameters compared to the control. On the other hand, the relative gene expression for all myogenic growth factors was the highest in the humic group alone. Based on the results obtained, we can confirm the immunostimulating effect of L. fermentum 2i3 administered in drinking water, which also had an impact on important production parameters of broiler meat. On the other hand, in the combined group there was no expected potentiation of the positive effects on the observed parameters.
- Klíčová slova
- broiler chicken, humic substance, immune parameter, limosilactobacillus,
- MeSH
- dieta * veterinární MeSH
- huminové látky * analýza MeSH
- krmivo pro zvířata * analýza MeSH
- kur domácí * imunologie MeSH
- Limosilactobacillus fermentum * fyziologie MeSH
- náhodné rozdělení MeSH
- potravní doplňky analýza MeSH
- probiotika * farmakologie aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- huminové látky * MeSH
Since the publication of the first chicken genome sequence, we have encountered genes playing key roles in mammalian immunology, but being seemingly absent in birds. One of those was, until recently, Foxp3, the master transcription factor of regulatory T cells in mammals. Therefore, avian regulatory T cell research is still poorly standardized. In this study we identify a chicken ortholog of Foxp3 We prove sequence homology with known mammalian and sauropsid sequences, but also reveal differences in major domains. Expression profiling shows an association of Foxp3 and CD25 expression levels in CD4+CD25+ peripheral T cells and identifies a CD4-CD25+Foxp3high subset of thymic lymphocytes that likely represents yet undescribed avian regulatory T precursor cells. We conclude that Foxp3 is existent in chickens and that it shares certain functional characteristics with its mammalian ortholog. Nevertheless, pathways for regulatory T cell development and Foxp3 function are likely to differ between mammals and birds. The identification and characterization of chicken Foxp3 will help to define avian regulatory T cells and to analyze their functional properties and thereby advance the field of avian immunology.
- MeSH
- aktivace lymfocytů imunologie MeSH
- buněčná diferenciace imunologie MeSH
- forkhead transkripční faktory genetika MeSH
- genom genetika MeSH
- kur domácí genetika imunologie MeSH
- receptor interleukinu-2 - alfa-podjednotka metabolismus MeSH
- regulační T-lymfocyty imunologie MeSH
- sekvence aminokyselin genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie MeSH
- sekvenční seřazení MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- forkhead transkripční faktory MeSH
- receptor interleukinu-2 - alfa-podjednotka MeSH
The expression of genes related to the Toll-like receptors (TLRs) signaling pathway were determined. Group A, B and C fed with basal diet and group D, E and F induced TD by feeding a basal diet containing 100 mg·kg-1 thiram. rGSTA3 protein was injected at 20 μg·kg-1 in group B, E and at 50 μg·kg-1 in C, F. Results suggested that lameness and death of chondrocytes were significant on day 14. TLRs signaling pathway related genes were screened based on the transcriptome enrichment, and validated on qPCR. IL-7, TLR2, 3, 4, 5, 7, 15, MyD88, MHC-II, MDA5 and TRAF6 were significantly (p < 0.05) expressed in group E and F as compared to group D on day 14 and 23. IL-7, MHCII, TRAF6, TLR3, TLR5, TLR7, and TLR15 determined insignificant in group D compared to group A on day 23. TD occur in an early phase and alleviated in the later period. rGSTA3 protein can prevent apoptosis and repair degraded chondrocytes.
- Klíčová slova
- Apoptosis, Broiler, Erythrocyte, Immunity, Protein, Tibial dyschondroplasia,
- MeSH
- apoptóza MeSH
- chondrocyty fyziologie MeSH
- erytrocyty fyziologie MeSH
- glutathiontransferasa genetika metabolismus MeSH
- kur domácí imunologie MeSH
- nemoci drůbeže imunologie MeSH
- osteochondrodysplazie imunologie MeSH
- přirozená imunita MeSH
- ptačí proteiny genetika metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- signální transdukce genetika MeSH
- thiram metabolismus MeSH
- toll-like receptory metabolismus MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glutathiontransferasa MeSH
- ptačí proteiny MeSH
- rekombinantní proteiny MeSH
- thiram MeSH
- toll-like receptory MeSH
Eggshell colour, quality, and biosafety of table eggs are of significant commercial interest. To date, there have been few studies investigating the relationship between eggshell pigmentation and internal egg quality in commercially bred birds. Moreover, the genetic basis and mechanisms behind the effects of extrinsic factors on deposition of antimicrobial compounds in egg white and eggshell pigments are not fully understood. In the present study, we evaluate the effect of chicken breed identity, eggshell pigmentation and the role of extrinsic factors (year and breeder identity) on variability in the concentrations of 2 major egg white antimicrobial proteins (AMPs), lysozyme (LSM), and ovotransferrin (OVOTR), across 23 traditional chicken breeds. We found that chicken breed identity and eggshell pigmentation explained most variability in the concentration of egg white LSM and OVOTR. Year and breeder identity were also significant predictors of egg white LSM and OVOTR variability, and showed selective effects on the deposition of both AMPs in egg white. We also documented a positive correlation between concentration of egg white LSM and eggshell cuticle protoporphyrin in tinted and dark brown eggs, but not in brown, white, and blue eggs. We assume that a combination of both intrinsic genetic and hormonally regulated extrinsic factors is responsible for this relationship and for the variability in egg white AMPs. In this study, we demonstrate the existence of a relationship between eggshell pigmentation and egg white AMPs content in the eggs of traditional chicken breeds that may advertise the egg's antimicrobial potential and biosafety. These findings provide novel insights into the relationship between eggshell pigmentation and egg internal quality and may stimulate the recovery and exploitation of traditional chicken breeds for egg production, where the demands for egg quality and biosafety, in conjunction with animal welfare, are a priority.
- Klíčová slova
- albumen, eggshell colour, lysozyme, ovotransferrin, protoporphyrin IX,
- MeSH
- imunomodulace genetika MeSH
- kationické antimikrobiální peptidy genetika metabolismus MeSH
- kur domácí genetika imunologie metabolismus MeSH
- pigmentace MeSH
- ptačí proteiny genetika metabolismus MeSH
- vaječná skořápka chemie MeSH
- vaječné proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kationické antimikrobiální peptidy MeSH
- ptačí proteiny MeSH
- vaječné proteiny MeSH
The expression level of acute phase proteins (APPs) mirrors the health status of an individual. In human medicine, C-reactive protein (CRP), and other members of the pentraxin family are of significant relevance for assessing disease severity and prognosis. In chickens, however, which represent the most common livestock species around the world, no such marker has yet gained general acceptance. The aim of this study was therefore, to characterize chicken pentraxin 3 (chPTX3) and to evaluate its applicability as a general marker for inflammatory conditions. The mammalian and chicken PTX3 proteins were predicted to be similar in sequence, domain organization and polymeric structure. Nevertheless, some characteristics like certain sequence sections, which have varied during the evolution of mammals, and species-specific glycosylation patterns, suggest distinct biological functions. ChPTX3 is constitutively expressed in various tissues but, interestingly, could not be found in splenic tissue samples without stimulation. However, upon treatment with lipopolysaccharide (LPS), PTX3 expression in chicken spleens increased to 95-fold within hours. A search for PTX3 reads in various publicly available RNA-seq data sets of chicken spleen and bursa of Fabricius also showed that PTX3 expression increases within days after experimental infection with viral and bacterial pathogens. An experimental infection with avian pathogenic E.coli and qPCR analysis of spleen samples further established a challenge dose-dependent significant up-regulation of chPTX3 in subclinically infected birds of up to over 150-fold as compared to untreated controls. Our results indicate the potential of chPTX3 as an APP marker to monitor inflammatory conditions in poultry flocks.
- Klíčová slova
- LPS, acute phase proteins, avian pathogenic E. coli, chicken, inflammation, next generation sequencing, pentraxin,
- MeSH
- biologické markery metabolismus MeSH
- C-reaktivní protein genetika imunologie metabolismus MeSH
- Escherichia coli fyziologie MeSH
- infekce vyvolané Escherichia coli diagnóza MeSH
- kultivované buňky MeSH
- kur domácí imunologie MeSH
- lidé MeSH
- nemoci ptáků diagnóza MeSH
- proteiny akutní fáze genetika imunologie metabolismus MeSH
- ptačí proteiny genetika imunologie metabolismus MeSH
- sekvenční seřazení MeSH
- sérový amyloidový protein genetika imunologie metabolismus MeSH
- upregulace MeSH
- zánět diagnóza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- biologické markery MeSH
- C-reaktivní protein MeSH
- proteiny akutní fáze MeSH
- ptačí proteiny MeSH
- PTX3 protein MeSH Prohlížeč
- sérový amyloidový protein MeSH
Events occurring in the chicken caecum following Salmonella Enteritidis infection are relatively well-described. However, mechanisms of the immune response and defence beyond the intestinal tract are less well-described. In this study, we therefore determined changes in protein abundance in the liver and blood serum in response to S. Enteritidis infection using the unbiased approach of shotgun proteomics. Complement and coagulation cascades, TNF signalling, antigen processing and presentation was activated in the liver following infection with S. Enteritidis. Chicken proteins that decreased in the liver were involved in glycolysis, the citrate cycle, oxidative phosphorylation and fatty acid metabolism. No functional category was significantly activated or suppressed in the serum. Concerning individual proteins, VNN1, SAA, AVD, SERPINA3, SERPINB10, AGT, MRP126 or CP increased in abundance both in the liver and serum. MT4, MT3, PTGDS, GLRX and TGM4, though highly inducible in the liver, did not increase in the serum. PIGR, SERPINF2 and IGJ increased in the serum but not in the liver. SERPINA4, apoAIV, CLEC3B, SERPINF1, HRG, AHSG and ALB decreased both in the liver and serum. Avidin-like LOC431660, THRSP, GATM, GGACT, ACOX1, ALDOB or FABP7 decreased in the liver but not in the serum. Finally, CKM, CKB, PLTP, COMP, IGFALS, AMY1A or SERPIND1 decreased in the serum after S. Enteritidis infection but not in the liver. Differently abundant proteins characterise the chicken's response to infection and can be also used as markers of chicken health status.
- Klíčová slova
- Acute phase protein, Chicken, Liver, Proteomics, Salmonella, Serum,
- MeSH
- cékum imunologie MeSH
- játra imunologie metabolismus mikrobiologie MeSH
- kur domácí krev imunologie MeSH
- nemoci drůbeže imunologie mikrobiologie MeSH
- prezentace antigenu MeSH
- proteiny akutní fáze analýza MeSH
- proteomika * MeSH
- Salmonella enteritidis MeSH
- salmonelová infekce u zvířat krev imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny akutní fáze MeSH
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine playing critical roles in host defense and acute and chronic inflammation. It has been described in fish, amphibians, and mammals but was considered to be absent in the avian genomes. Here, we report on the identification and functional characterization of the avian ortholog. The chicken TNF-α (chTNF-α) is encoded by a highly GC-rich gene, whose product shares with its mammalian counterpart 45% homology in the extracellular part displaying the characteristic TNF homology domain. Orthologs of chTNF-α were identified in the genomes of 12 additional avian species including Palaeognathae and Neognathae, and the synteny of the closely adjacent loci with mammalian TNF-α orthologs was demonstrated in the crow (Corvus cornix) genome. In addition to chTNF-α, we obtained full sequences for homologs of TNF-α receptors 1 and 2 (TNFR1, TNFR2). chTNF-α mRNA is strongly induced by lipopolysaccharide (LPS) stimulation of monocyte derived, splenic and bone marrow macrophages, and significantly upregulated in splenic tissue in response to i.v. LPS treatment. Activation of T-lymphocytes by TCR crosslinking induces chTNF-α expression in CD4+ but not in CD8+ cells. To gain insights into its biological activity, we generated recombinant chTNF-α in eukaryotic and prokaryotic expression systems. Both, the full-length cytokine and the extracellular domain rapidly induced an NFκB-luciferase reporter in stably transfected CEC-32 reporter cells. Collectively, these data provide strong evidence for the existence of a fully functional TNF-α/TNF-α receptor system in birds thus filling a gap in our understanding of the evolution of cytokine systems.
- Klíčová slova
- avian, biological activity, chicken, missing gene, tumor necrosis factor-α, tumor necrosis factor-α receptors,
- MeSH
- CD4-pozitivní T-lymfocyty imunologie MeSH
- GC bohatá sekvence genetika MeSH
- klonování DNA MeSH
- kultivované buňky MeSH
- kur domácí imunologie MeSH
- lidé MeSH
- makrofágy imunologie MeSH
- NF-kappa B metabolismus MeSH
- Palaeognathae imunologie MeSH
- ptačí proteiny genetika metabolismus MeSH
- receptory TNF genetika metabolismus MeSH
- savci imunologie MeSH
- sekvenční seřazení MeSH
- TNF-alfa genetika MeSH
- vrány imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- NF-kappa B MeSH
- ptačí proteiny MeSH
- receptory TNF MeSH
- TNF-alfa MeSH
Lymphocytes represent the key antigen-specific leukocyte subpopulation. Despite their importance in mounting an immune response, an unbiased description of proteins expressed by chicken lymphocytes has not been presented. In this study, we therefore intravenously infected chickens with Salmonella Enteritidis, sorted CD4, CD8 and γδ T-lymphocytes from the spleen by flow cytometry and determined the proteome of each population by LC-MS/MS. CD4 T-lymphocyte characteristic proteins included ubiquitin SUMO-like domain and BAR domain containing proteins. CD8 T-lymphocyte specific proteins were characterized by purine ribonucleoside triphosphate binding and were involved in cell differentiation, cell activation and regulation of programmed cell death. γδ T-lymphocyte specific proteins exhibited enrichment of small GTPase of Rab type and GTP binding. Following infection, inducible proteins in CD4 lymphocytes included ribosomal proteins and downregulated proteins localized to the lysosome. CD8 T-lymphocytes induced MCM complex proteins, proteins required for DNA replication and machinery for protein processing in the endoplasmic reticulum. Proteins inducible in γδ T-lymphocytes belonged to immune system response, oxidative phosphorylation and the spliceosome. In this study, we predicted the likely events in lymphocyte response to systemic bacterial infection and identified proteins which can be used as markers specific for each lymphocyte subpopulation.
- Klíčová slova
- Cell sorting, Chicken, Mass spectrometry, Proteome, Salmonella, T-lymphocyte,
- MeSH
- CD4-pozitivní T-lymfocyty imunologie metabolismus mikrobiologie MeSH
- CD8-pozitivní T-lymfocyty imunologie metabolismus mikrobiologie MeSH
- intraepiteliální lymfocyty imunologie metabolismus mikrobiologie MeSH
- kur domácí imunologie metabolismus MeSH
- nemoci drůbeže imunologie metabolismus mikrobiologie prevence a kontrola MeSH
- Salmonella enteritidis imunologie metabolismus MeSH
- salmonelové vakcíny imunologie MeSH
- salmonelóza imunologie metabolismus mikrobiologie prevence a kontrola MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- salmonelové vakcíny MeSH