Most cited article - PubMed ID 29203375
Free energy calculations on the stability of the 14-3-3ζ protein
Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain. Monomerization of 14-3-3ζ leads to the loss of affinity for the unphosphorylated residues. In neuroblastoma cell extract, MAP2c is heavily phosphorylated by PKA and the proline kinase ERK2. Although 14-3-3ζ dimer or monomer do not interact with the residues phosphorylated by ERK2, ERK2 phosphorylation of MAP2c in the C-terminal domain reduces the binding of MAP2c to both oligomeric variants of 14-3-3ζ.
- Keywords
- 14‐3‐3 proteins, extracellular signal‐regulated kinase 2, microtubule‐associated protein, nuclear magnetic resonance, protein kinase A,
- MeSH
- Phosphorylation MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Mitogen-Activated Protein Kinase 1 metabolism genetics MeSH
- Models, Molecular MeSH
- Protein Multimerization MeSH
- Cyclic AMP-Dependent Protein Kinases metabolism genetics MeSH
- 14-3-3 Proteins * metabolism chemistry genetics MeSH
- Microtubule-Associated Proteins * metabolism chemistry genetics MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- MAPK1 protein, human MeSH Browser
- Mitogen-Activated Protein Kinase 1 MeSH
- Cyclic AMP-Dependent Protein Kinases MeSH
- 14-3-3 Proteins * MeSH
- Microtubule-Associated Proteins * MeSH
- YWHAZ protein, human MeSH Browser
Protein phosphorylation is a critical mechanism that biology uses to govern cellular processes. To study the impact of phosphorylation on protein properties, a fully and specifically phosphorylated sample is required although not always achievable. Commonly, this issue is overcome by installing phosphomimicking mutations at the desired site of phosphorylation. 14-3-3 proteins are regulatory protein hubs that interact with hundreds of phosphorylated proteins and modulate their structure and activity. 14-3-3 protein function relies on its dimeric nature, which is controlled by Ser58 phosphorylation. However, incomplete Ser58 phosphorylation has obstructed the detailed study of its effect so far. In the present study, we describe the full and specific phosphorylation of 14-3-3ζ protein at Ser58 and we compare its characteristics with phosphomimicking mutants that have been used in the past (S58E/D). Our results show that in case of the 14-3-3 proteins, phosphomimicking mutations are not a sufficient replacement for phosphorylation. At physiological concentrations of 14-3-3ζ protein, the dimer-monomer equilibrium of phosphorylated protein is much more shifted towards monomers than that of the phosphomimicking mutants. The oligomeric state also influences protein properties such as thermodynamic stability and hydrophobicity. Moreover, phosphorylation changes the localization of 14-3-3ζ in HeLa and U251 human cancer cells. In summary, our study highlights that phosphomimicking mutations may not faithfully represent the effects of phosphorylation on the protein structure and function and that their use should be justified by comparing to the genuinely phosphorylated counterpart.
- Keywords
- 14-3-3, dissociation constant, oligomeric state, phosphomimicking mutation, phosphorylation,
- Publication type
- Journal Article MeSH