Most cited article - PubMed ID 29374165
Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra
Biomolecular polyelectrolyte complexes can be formed between oppositely charged intrinsically disordered regions (IDRs) of proteins or between IDRs and nucleic acids. Highly charged IDRs are abundant in the nucleus, yet few have been functionally characterized. Here, we show that a positively charged IDR within the human ATP-dependent DNA helicase Q4 (RECQ4) forms coacervates with G-quadruplexes (G4s). We describe a three-step model of charge-driven coacervation by integrating equilibrium and kinetic binding data in a global numerical model. The oppositely charged IDR and G4 molecules form a complex in the solution that follows a rapid nucleation-growth mechanism leading to a dynamic equilibrium between dilute and condensed phases. We also discover a physical interaction with Replication Protein A (RPA) and demonstrate that the IDR can switch between the two extremes of the structural continuum of complexes. The structural, kinetic, and thermodynamic profile of its interactions revealed a dynamic disordered complex with nucleic acids and a static ordered complex with RPA protein. The two mutually exclusive binding modes suggest a regulatory role for the IDR in RECQ4 function by enabling molecular handoffs. Our study extends the functional repertoire of IDRs and demonstrates a role of polyelectrolyte complexes involved in G4 binding.
- MeSH
- G-Quadruplexes * MeSH
- RecQ Helicases * metabolism MeSH
- Humans MeSH
- Nucleic Acids MeSH
- Polyelectrolytes MeSH
- Intrinsically Disordered Proteins * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RecQ Helicases * MeSH
- Nucleic Acids MeSH
- Polyelectrolytes MeSH
- RECQL4 protein, human MeSH Browser
- Intrinsically Disordered Proteins * MeSH
Clathrin-mediated endocytosis (CME) is the gatekeeper of the plasma membrane. In contrast to animals and yeasts, CME in plants depends on the TPLATE complex (TPC), an evolutionary ancient adaptor complex. However, the mechanistic contribution of the individual TPC subunits to plant CME remains elusive. In this study, we used a multidisciplinary approach to elucidate the structural and functional roles of the evolutionary conserved N-terminal Eps15 homology (EH) domains of the TPC subunit AtEH1/Pan1. By integrating high-resolution structural information obtained by X-ray crystallography and NMR spectroscopy with all-atom molecular dynamics simulations, we provide structural insight into the function of both EH domains. Both domains bind phosphatidic acid with a different strength, and only the second domain binds phosphatidylinositol 4,5-bisphosphate. Unbiased peptidome profiling by mass-spectrometry revealed that the first EH domain preferentially interacts with the double N-terminal NPF motif of a previously unidentified TPC interactor, the integral membrane protein Secretory Carrier Membrane Protein 5 (SCAMP5). Furthermore, we show that AtEH/Pan1 proteins control the internalization of SCAMP5 via this double NPF peptide interaction motif. Collectively, our structural and functional studies reveal distinct but complementary roles of the EH domains of AtEH/Pan1 in plant CME and connect the internalization of SCAMP5 to the TPLATE complex.
- MeSH
- Adaptor Proteins, Signal Transducing chemistry genetics MeSH
- Cell Membrane metabolism MeSH
- Endocytosis * MeSH
- Plants, Genetically Modified MeSH
- Crystallography, X-Ray MeSH
- Membrane Proteins chemistry MeSH
- Protein Domains MeSH
- Arabidopsis Proteins MeSH
- Calcium-Binding Proteins chemistry genetics MeSH
- Plant Proteins chemistry genetics MeSH
- Sequence Alignment MeSH
- Molecular Dynamics Simulation MeSH
- Nicotiana genetics MeSH
- Protein Transport MeSH
- Protein Binding * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adaptor Proteins, Signal Transducing MeSH
- Membrane Proteins MeSH
- Arabidopsis Proteins MeSH
- Calcium-Binding Proteins MeSH
- Plant Proteins MeSH
- TPLATE protein, Arabidopsis MeSH Browser
The PDZ domain of Dishevelled 3 protein belongs to a highly abundant protein recognition motif which typically binds short C-terminal peptides. The affinity of the PDZ towards the peptides could be fine-tuned by a variety of post-translation modifications including phosphorylation. However, how phosphorylations affect the PDZ structure and its interactions with ligands remains elusive. Combining molecular dynamics simulations, NMR titration, and biological experiments, we explored the role of previously reported phosphorylation sites and their mimetics in the Dishevelled PDZ domain. Our observations suggest three major roles for phosphorylations: (1) acting as an on/off PDZ binding switch, (2) allosterically affecting the binding groove, and (3) influencing the secondary binding site. Our simulations indicated that mimetics had similar but weaker effects, and the effects of distinct sites were non-additive. This study provides insight into the Dishevelled regulation by PDZ phosphorylation. Furthermore, the observed effects could be used to elucidate the regulation mechanisms in other PDZ domains.
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Dishevelled (DVL) is an essential component of the Wnt signaling cascades. Function of DVL is controlled by phosphorylation but the molecular details are missing. DVL3 contains 131 serines and threonines whose phosphorylation generates complex barcodes underlying diverse DVL3 functions. In order to dissect the role of DVL phosphorylation we analyzed the phosphorylation of human DVL3 induced by previously reported (CK1ε, NEK2, PLK1, CK2α, RIPK4, PKCδ) and newly identified (TTBK2, Aurora A) DVL kinases. METHODS: Shotgun proteomics including TiO2 enrichment of phosphorylated peptides followed by liquid chromatography tandem mass spectrometry on immunoprecipitates from HEK293T cells was used to identify and quantify phosphorylation of DVL3 protein induced by 8 kinases. Functional characterization was performed by in-cell analysis of phospho-mimicking/non-phosphorylatable DVL3 mutants and supported by FRET assays and NMR spectroscopy. RESULTS: We used quantitative mass spectrometry and calculated site occupancies and quantified phosphorylation of > 80 residues. Functional validation demonstrated the importance of CK1ε-induced phosphorylation of S268 and S311 for Wnt-3a-induced β-catenin activation. S630-643 cluster phosphorylation by CK1, NEK2 or TTBK2 is essential for even subcellular distribution of DVL3 when induced by CK1 and TTBK2 but not by NEK2. Further investigation showed that NEK2 utilizes a different mechanism to promote even localization of DVL3. NEK2 triggered phosphorylation of PDZ domain at S263 and S280 prevents binding of DVL C-terminus to PDZ and promotes an open conformation of DVL3 that is more prone to even subcellular localization. CONCLUSIONS: We identify unique phosphorylation barcodes associated with DVL function. Our data provide an example of functional synergy between phosphorylation in structured domains and unstructured IDRs that together dictate the biological outcome. Video Abtract.
- Keywords
- CK1, DVL3, Dishevelled, Kinase, Mass spectrometry, NEK2, Phosphorylation, TTBK2, Wnt,
- MeSH
- Phosphorylation MeSH
- HEK293 Cells MeSH
- Mass Spectrometry MeSH
- NIMA-Related Kinases metabolism MeSH
- Protein Conformation MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Dishevelled Proteins chemistry metabolism MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- DVL3 protein, human MeSH Browser
- NIMA-Related Kinases MeSH
- NEK2 protein, human MeSH Browser
- Dishevelled Proteins MeSH
Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.
- MeSH
- Single-Cell Analysis methods MeSH
- Biosensing Techniques MeSH
- Enzyme Assays methods MeSH
- Microscopy, Fluorescence methods MeSH
- Phosphorylation physiology MeSH
- Frizzled Receptors metabolism MeSH
- Gene Knockout Techniques MeSH
- HEK293 Cells MeSH
- Casein Kinase 1 epsilon genetics metabolism MeSH
- Humans MeSH
- Mutagenesis, Site-Directed MeSH
- Oocytes MeSH
- PDZ Domains physiology MeSH
- Dishevelled Proteins genetics metabolism MeSH
- Fluorescence Resonance Energy Transfer MeSH
- Wnt Signaling Pathway physiology MeSH
- Molecular Dynamics Simulation MeSH
- Xenopus laevis MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DVL3 protein, human MeSH Browser
- Frizzled Receptors MeSH
- FZD6 protein, human MeSH Browser
- Casein Kinase 1 epsilon MeSH
- Dishevelled Proteins MeSH
β-sheet proteins carry out critical functions in biology, and hence are attractive scaffolds for computational protein design. Despite this potential, de novo design of all-β-sheet proteins from first principles lags far behind the design of all-α or mixed-αβ domains owing to their non-local nature and the tendency of exposed β-strand edges to aggregate. Through study of loops connecting unpaired β-strands (β-arches), we have identified a series of structural relationships between loop geometry, side chain directionality and β-strand length that arise from hydrogen bonding and packing constraints on regular β-sheet structures. We use these rules to de novo design jellyroll structures with double-stranded β-helices formed by eight antiparallel β-strands. The nuclear magnetic resonance structure of a hyperthermostable design closely matched the computational model, demonstrating accurate control over the β-sheet structure and loop geometry. Our results open the door to the design of a broad range of non-local β-sheet protein structures.
- MeSH
- Protein Conformation, beta-Strand MeSH
- Protein Conformation MeSH
- Models, Molecular MeSH
- Nuclear Magnetic Resonance, Biomolecular MeSH
- Computer Simulation MeSH
- Protein Engineering methods MeSH
- Proteins chemistry genetics MeSH
- Protein Folding MeSH
- Amino Acid Sequence MeSH
- Protein Stability MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Proteins MeSH