Most cited article - PubMed ID 29396291
Novel Structural Mechanism of Allosteric Regulation of Aspartic Peptidases via an Evolutionarily Conserved Exosite
Ticks are important ectoparasites and vectors of a variety of pathogens in both animals and humans, and their increasing global distribution poses a growing health risk. Unlike other blood-feeding vectors, ticks feed for an extended period at each life stage and rely exclusively on blood for development and reproduction. Blood digestion in ticks is mediated by a complex multienzyme network within the endolysosomal system of the midgut (MG) epithelial cells. Previous studies have focused largely on protein digestion during the slow feeding phase. However, the processing of the blood meal after the mating-induced rapid engorgement ("big sip") remains unclear, although the rapid turnover of proteins from host blood proteins into yolk proteins in fully fed females is a crucial step for tick reproduction. In this study, we performed a label-free quantitative proteomic analysis of MG tissue extracts and MG contents of the hard tick Ixodes ricinus to characterize proteases and protease inhibitors expressed during selected timepoints of female feeding and off-host digestion. In addition, we analyzed the distribution of digestive enzymes by activity profiling in MG extracts and contents with specific diagnostic substrates. Our results show that the multienzyme network, mainly based on aspartic acid and cysteine cathepsins and complemented by specific types of serine proteases and metalloproteases, is involved in the intracellular and probably also in the luminal digestion of blood meal proteins in fully engorged female ticks. We also detected different types of protease inhibitors and proposed their regulatory role in controlling both endogenous (tick-derived) and host protease activities in the MG tissue and luminal contents storing ingested blood. These results provide comprehensive insights into the physiology of the tick MG and offer new opportunities for the development of future control strategies against ticks and tick-borne diseases.
- Keywords
- adult Ixodes ricinus, label-free proteomics, midgut proteome, proteolytic system, tick physiology,
- MeSH
- Ixodes * metabolism physiology enzymology MeSH
- Peptide Hydrolases metabolism MeSH
- Arthropod Proteins * metabolism MeSH
- Proteome * metabolism MeSH
- Proteomics * methods MeSH
- Feeding Behavior MeSH
- Digestion * MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Peptide Hydrolases MeSH
- Arthropod Proteins * MeSH
- Proteome * MeSH
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
- Keywords
- Human Immunodeficiency Virus (HIV), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), activation, adenoviruses, autoprocessing, flaviviruses, herpesviruses, precursor, protease,
- MeSH
- Antiviral Agents pharmacology MeSH
- Flavivirus drug effects metabolism MeSH
- Herpesviridae drug effects metabolism MeSH
- HIV-1 drug effects MeSH
- Viral Protease Inhibitors pharmacology MeSH
- Humans MeSH
- Adenoviruses, Human drug effects metabolism MeSH
- SARS-CoV-2 drug effects metabolism MeSH
- Virus Diseases drug therapy MeSH
- Viral Proteases biosynthesis metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Antiviral Agents MeSH
- Viral Protease Inhibitors MeSH
- Viral Proteases MeSH
The hard tick Ixodes ricinus is a vector of Lyme disease and tick-borne encephalitis. Host blood protein digestion, essential for tick development and reproduction, occurs in tick midgut digestive cells driven by cathepsin proteases. Little is known about the regulation of the digestive proteolytic machinery of I. ricinus. Here we characterize a novel cystatin-type protease inhibitor, mialostatin, from the I. ricinus midgut. Blood feeding rapidly induced mialostatin expression in the gut, which continued after tick detachment. Recombinant mialostatin inhibited a number of I. ricinus digestive cysteine cathepsins, with the greatest potency observed against cathepsin L isoforms, with which it co-localized in midgut digestive cells. The crystal structure of mialostatin was determined at 1.55 Å to explain its unique inhibitory specificity. Finally, mialostatin effectively blocked in vitro proteolysis of blood proteins by midgut cysteine cathepsins. Mialostatin is likely to be involved in the regulation of gut-associated proteolytic pathways, making midgut cystatins promising targets for tick control strategies.
- Keywords
- Ixodes ricinus, cathepsin, crystal structure, cysteine protease, digestion, midgut, parasite,
- MeSH
- Cystatins metabolism MeSH
- Phylogeny MeSH
- Cathepsin L metabolism MeSH
- Ticks metabolism MeSH
- Ixodes metabolism MeSH
- Blood Proteins metabolism MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Proteolysis MeSH
- Amino Acid Sequence MeSH
- Digestive System metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cystatins MeSH
- Cathepsin L MeSH
- Blood Proteins MeSH