Nejvíce citovaný článek - PubMed ID 29420807
Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics
Rates of nucleotide substitution vary substantially across the Tree of Life, with potentially confounding effects on phylogenetic and evolutionary analyses. A large acceleration in mitochondrial substitution rate occurs in the cockroach family Nocticolidae, which predominantly inhabit subterranean environments. To evaluate the impacts of this among-lineage rate heterogeneity on estimates of phylogenetic relationships and evolutionary timescales, we analyzed nuclear ultraconserved elements (UCEs) and mitochondrial genomes from nocticolids and other cockroaches. Substitution rates were substantially elevated in nocticolid lineages compared with other cockroaches, especially in mitochondrial protein-coding genes. This disparity in evolutionary rates is likely to have led to different evolutionary relationships being supported by phylogenetic analyses of mitochondrial genomes and UCE loci. Furthermore, Bayesian dating analyses using relaxed-clock models inferred much deeper divergence times compared with a flexible local clock. Our phylogenetic analysis of UCEs, which is the first genome-scale study to include all 13 major cockroach families, unites Corydiidae and Nocticolidae and places Anaplectidae as the sister lineage to the rest of Blattoidea. We uncover an extraordinary level of genetic divergence in Nocticolidae, including two highly distinct clades that separated ~115 million years ago despite both containing representatives of the genus Nocticola. The results of our study highlight the potential impacts of high among-lineage rate variation on estimates of phylogenetic relationships and evolutionary timescales.
- Klíčová slova
- Among-lineage rate heterogeneity, Nocticolidae, clock models, divergence times, flexible local clock, molecular dating, ultraconserved elements,
- MeSH
- fylogeneze * MeSH
- genom mitochondriální MeSH
- molekulární evoluce MeSH
- švábi * genetika klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.
- MeSH
- fylogeneze * MeSH
- genom hmyzu MeSH
- genomika * metody MeSH
- Isoptera * genetika klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The origin of the German cockroach, Blattella germanica, is enigmatic, in part because it is ubiquitous worldwide in human-built structures but absent from any natural habitats. The first historical records of this species are from ca. 250 years ago (ya) from central Europe (hence its name). However, recent research suggests that the center of diversity of the genus is Asian, where its closest relatives are found. To solve this paradox, we sampled genome-wide markers of 281 cockroaches from 17 countries across six continents. We confirm that B. germanica evolved from the Asian cockroach Blattella asahinai approximately 2,100 ya, probably by adapting to human settlements in India or Myanmar. Our genomic analyses reconstructed two primary global spread routes, one older, westward route to the Middle East coinciding with various Islamic dynasties (~1,200 ya), and another younger eastward route coinciding with the European colonial period (~390 ya). While Europe was not central to the early domestication and spread of the German cockroach, European advances in long-distance transportation and temperature-controlled housing were likely important for the more recent global spread, increasing chances of successful dispersal to and establishment in new regions. The global genetic structure of German cockroaches further supports our model, as it generally aligns with geopolitical boundaries, suggesting regional bridgehead populations established following the advent of international commerce.
- Klíčová slova
- domestication, globalization, insecticide resistance, integrated pest management, invasive species,
- MeSH
- biologická evoluce MeSH
- Ectobiidae * genetika MeSH
- fylogeneze MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Many insects harbor bacterial endosymbionts that supply essential nutrients and enable their hosts to thrive on a nutritionally unbalanced diet. Comparisons of the genomes of endosymbionts and their insect hosts have revealed multiple cases of mutually-dependent metabolic pathways that require enzymes encoded in 2 genomes. Complementation of metabolic reactions at the pathway level has been described for hosts feeding on unbalanced diets, such as plant sap. However, the level of collaboration between symbionts and hosts that feed on more variable diets is largely unknown. In this study, we investigated amino acid and vitamin/cofactor biosynthetic pathways in Blattodea, which comprises cockroaches and termites, and their obligate endosymbiont Blattabacterium cuenoti (hereafter Blattabacterium). In contrast to other obligate symbiotic systems, we found no clear evidence of "collaborative pathways" for amino acid biosynthesis in the genomes of these taxa, with the exception of collaborative arginine biosynthesis in 2 taxa, Cryptocercus punctulatus and Mastotermes darwiniensis. Nevertheless, we found that several gaps specific to Blattabacterium in the folate biosynthetic pathway are likely to be complemented by their host. Comparisons with other insects revealed that, with the exception of the arginine biosynthetic pathway, collaborative pathways for essential amino acids are only observed in phloem-sap feeders. These results suggest that the host diet is an important driving factor of metabolic pathway evolution in obligate symbiotic systems. IMPORTANCE The long-term coevolution between insects and their obligate endosymbionts is accompanied by increasing levels of genome integration, sometimes to the point that metabolic pathways require enzymes encoded in two genomes, which we refer to as "collaborative pathways". To date, collaborative pathways have only been reported from sap-feeding insects. Here, we examined metabolic interactions between cockroaches, a group of detritivorous insects, and their obligate endosymbiont, Blattabacterium, and only found evidence of collaborative pathways for arginine biosynthesis. The rarity of collaborative pathways in cockroaches and Blattabacterium contrasts with their prevalence in insect hosts feeding on phloem-sap. Our results suggest that host diet is a factor affecting metabolic integration in obligate symbiotic systems.
- Klíčová slova
- Blattabacterium, Blattodea, co-evolution, co-metabolism, endosymbiosis, insects,
- MeSH
- aminokyseliny MeSH
- arginin genetika MeSH
- Bacteria genetika MeSH
- esenciální aminokyseliny genetika MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- hmyz MeSH
- kyselina listová MeSH
- metabolické sítě a dráhy genetika MeSH
- švábi * mikrobiologie MeSH
- symbióza MeSH
- vitaminy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- arginin MeSH
- esenciální aminokyseliny MeSH
- kyselina listová MeSH
- vitaminy MeSH
Bacterial endosymbionts evolve under strong host-driven selection. Factors influencing host evolution might affect symbionts in similar ways, potentially leading to correlations between the molecular evolutionary rates of hosts and symbionts. Although there is evidence of rate correlations between mitochondrial and nuclear genes, similar investigations of hosts and symbionts are lacking. Here, we demonstrate a correlation in molecular rates between the genomes of an endosymbiont (Blattabacterium cuenoti) and the mitochondrial genomes of their hosts (cockroaches). We used partial genome data for multiple strains of B. cuenoti to compare phylogenetic relationships and evolutionary rates for 55 cockroach/symbiont pairs. The phylogenies inferred for B. cuenoti and the mitochondrial genomes of their hosts were largely congruent, as expected from their identical maternal and cytoplasmic mode of inheritance. We found a correlation between evolutionary rates of the two genomes, based on comparisons of root-to-tip distances and on comparisons of the branch lengths of phylogenetically independent species pairs. Our results underscore the profound effects that long-term symbiosis can have on the biology of each symbiotic partner.
- Klíčová slova
- Blattabacterium cuenoti, cockroach, host–symbiont interaction, molecular evolution, phylogeny, substitution rate,
- MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genom mitochondriální * MeSH
- molekulární evoluce MeSH
- švábi * MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Almost all examined cockroaches harbor an obligate intracellular endosymbiont, Blattabacterium cuenoti. On the basis of genome content, Blattabacterium has been inferred to recycle nitrogen wastes and provide amino acids and cofactors for its hosts. Most Blattabacterium strains sequenced to date harbor a genome of ∼630 kbp, with the exception of the termite Mastotermes darwiniensis (∼590 kbp) and Cryptocercus punctulatus (∼614 kbp), a representative of the sister group of termites. Such genome reduction may have led to the ultimate loss of Blattabacterium in all termites other than Mastotermes. In this study, we sequenced 11 new Blattabacterium genomes from three species of Cryptocercus in order to shed light on the genomic evolution of Blattabacterium in termites and Cryptocercus. All genomes of Cryptocercus-derived Blattabacterium genomes were reduced (∼614 kbp), except for that associated with Cryptocercus kyebangensis, which comprised 637 kbp. Phylogenetic analysis of these genomes and their content indicates that Blattabacterium experienced parallel genome reduction in Mastotermes and Cryptocercus, possibly due to similar selective forces. We found evidence of ongoing genome reduction in Blattabacterium from three lineages of the C. punctulatus species complex, which independently lost one cysteine biosynthetic gene. We also sequenced the genome of the Blattabacterium associated with Salganea taiwanensis, a subsocial xylophagous cockroach that does not vertically transmit gut symbionts via proctodeal trophallaxis. This genome was 632 kbp, typical of that of nonsubsocial cockroaches. Overall, our results show that genome reduction occurred on multiple occasions in Blattabacterium, and is still ongoing, possibly because of new associations with gut symbionts in some lineages.
- MeSH
- dřevo mikrobiologie MeSH
- Flavobacteriaceae genetika MeSH
- fylogeneze MeSH
- genom bakteriální genetika MeSH
- Isoptera mikrobiologie MeSH
- švábi genetika MeSH
- symbióza genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH