Most cited article - PubMed ID 29430650
Competition-driven niche segregation on a landscape scale: Evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species
Understanding differences in life-history outcomes under variable abiotic conditions is essential for understanding species coexistence. At middle elevations, a mosaic of available sets of abiotic conditions could allow highland and lowland species of the same ecological guild to overlap. Therefore, these sites are excellent to study the influence of abiotic conditions on life history and, thus, spatial overlap patterns of competing species. To test differences in life-history outcomes, we selected a pair of closely related lacertids, Iberolacerta horvathi and Podarcis muralis, with an overlapping geographical range but a contrasting elevational distribution. To assess how abiotic and biotic factors contribute to the realized niches of both species, we first built dynamic energy budget (DEB) models for each species based on available functional and life-history data. Then, we used a mechanistic modelling framework (NicheMapR) to simulate the microclimatic conditions at 15 study sites across an elevational gradient and performed whole life-cycle simulations for both species to compare egg development times, lifespans, reproductive years, mean yearly basking and foraging times and yearly fecundity in syntopy and allotopy along the elevational gradient. Our simulations show that the variability of abiotic conditions along an elevational gradient affects life-history traits of both species. We found strong effects of species and elevation on life-history outcomes such as longevity, activity and fecundity. We also observed the effects of syntopy/allotopy on egg development times, activity and reproductive output. In addition, we found a significant interplay between elevation and species impacting fecundity where occupying higher elevation habitats resulted in a more pronounced reduction in fecundity in P. muralis. Furthermore, using two different thermal preferences for spring and summer, we show that some physiological and reproductive traits change with seasonal changes in thermal preferences. Based on our simulations, we conclude that the intermediate elevations that harbour the majority of syntopic populations exhibit high environmental variability that is likely facilitating species coexistence. Since our model predictions support that the current elevational distribution of the species is not only affected by abiotic factors, this suggests that past historical contingencies might have also played a significant role. Our study provides a framework using mechanistic models to understand current distribution patterns of two interacting species by comparing life-history differences between species based on responses to changing abiotic conditions along an elevation gradient.
- Keywords
- Lacertidae, dynamic energy budget, ectotherms, elevation, life history, microclimate, syntopy,
- MeSH
- Models, Biological MeSH
- Species Specificity MeSH
- Ecosystem * MeSH
- Lizards * physiology MeSH
- Microclimate * MeSH
- Altitude * MeSH
- Reproduction MeSH
- Animals MeSH
- Life History Traits * MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Divergence in sperm phenotype and female reproductive environment may be a common source of postmating prezygotic (PMPZ) isolation between species. However, compared to other reproductive barriers it has received much less attention. In this study, we examined sperm morphology and velocity in two hybridizing passerine species, the common nightingale (Luscinia megarhynchos) and thrush nightingale (L. luscinia). In addition, we for the first time characterized a passerine female reproductive tract fluid proteome. We demonstrate that spermatozoa of the common nightingale have significantly longer and wider midpiece (proximal part of the flagellum containing mitochondria) and longer tail compared to spermatozoa of thrush nightingale. On the other hand, they have significantly shorter and narrower acrosome. Importantly, these differences did not have any effect on sperm velocity. Furthermore, the fluid from the reproductive tract of common nightingale females did not differentially affect velocity of conspecific and heterospecific sperm. Our results indicate that the observed changes in the flagellum and acrosome size are unlikely to contribute to PMPZ isolation through differential sperm velocity of conspecific and heterospecific sperm in the female reproductive tract. However, they could affect other postcopulatory processes, which might be involved in PMPZ isolation, such as sperm storage, longevity or sperm-egg interaction.
- MeSH
- Insemination MeSH
- Reproduction MeSH
- Semen * MeSH
- Spermatozoa MeSH
- Songbirds * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Habitat overlap occurs when two species co-exist in the same habitat and utilise the same resources. Using common bird monitoring data in Czech Republic from 2015 and 2016, we compared the affinities of five Columbidae species regarding land use types. Moreover, we analysed the effects of land use types and land use heterogeneity on five species distributions. The aim of the study was to quantify the habitat overlap of five Columbidae species regarding types of land use and land use heterogeneity. We predicted a high level of habitat overlap between most of the species and its occurrence in farmlands and urban areas. Our results confirmed the high habitat overlap of all five Columbidae species in farmlands. An almost complete overlap was recorded between Columba livia domestica and Streptopelia decaocto, as well as between Columba palumbus and Streptopelia turtur. Considering land use utilisation, C. livia and S. decaocto mainly utilised farmlands and urban areas. Furthermore, deciduous forests were utilised by Columba oenas and coniferous and mixed forests by C. palumbus. Finally, S. turtur mainly utilised grasslands and avoided urban areas. We conclude that Columbidae species overlap in spatial distributions, mostly in urban areas, forests, and farmlands. Our study provides a summary of these common species habitat affinities.
- Keywords
- Columbidae, Czech Republic, habitat overlap, land use composition, species distribution,
- Publication type
- Journal Article MeSH
Changes in chromosomal structure involving chromosomal rearrangements or copy number variation of specific sequences can play an important role in speciation. Here, we explored the chromosomal structure of two hybridizing passerine species; the common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia luscinia), using conventional cytogenetic approaches, immunostaining of meiotic chromosomes, fluorescence in situ hybridization as well as comparative genomic hybridization (CGH). We found that the two nightingale species show conserved karyotypes with the same diploid chromosome number of 2n = 84. In addition to standard chromosomes, both species possessed a small germline restricted chromosome of similar size as a microchromosome. Just a few subtle changes in chromosome morphology were observed between the species, suggesting that only a limited number of chromosomal rearrangements occurred after the species divergence. The interspecific CGH experiment suggested that the two nightingale species might have diverged in centromeric repetitive sequences in most macro- and microchromosomes. In addition, some chromosomes showed changes in copy number of centromeric repeats between the species. The observation of very similar karyotypes in the two nightingale species is consistent with a generally slow rate of karyotype evolution in birds. The divergence of centromeric sequences between the two species could theoretically cause meiotic drive or reduced fertility in interspecific hybrids. Nevertheless, further studies are needed to evaluate the potential role of chromosomal structural variations in nightingale speciation.
- Keywords
- GRC, Luscinia, birds, centromere, chromosomal structure, comparative genomic hybridization, karyotype evolution, rDNA,
- Publication type
- Journal Article MeSH
BACKGROUND: It has been proposed that divergence in the gut microbiota composition between incipient species could contribute to their reproductive isolation. Nevertheless, empirical evidence for the role of gut microbiota in speciation is scarce. Moreover, it is still largely unknown to what extent closely related species in the early stages of speciation differ in their gut microbiota composition, especially in non-mammalian taxa, and which factors drive the divergence. Here we analysed the gut microbiota in two closely related passerine species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia luscinia). The ranges of these two species overlap in a secondary contact zone, where both species occasionally hybridize and where interspecific competition has resulted in habitat use differentiation. RESULTS: We analysed the gut microbiota from the proximal, middle and distal part of the small intestine in both sympatric and allopatric populations of the two nightingale species using sequencing of bacterial 16S rRNA. We found small but significant differences in the microbiota composition among the three gut sections. However, the gut microbiota composition in the two nightingale species did not differ significantly between either sympatric or allopatric populations. Most of the observed variation in the gut microbiota composition was explained by inter-individual differences. CONCLUSIONS: To our knowledge, this is the first attempt to assess the potential role of the gut microbiota in bird speciation. Our results suggest that neither habitat use, nor geographical distance, nor species identity have strong influence on the nightingale gut microbiota composition. This suggests that changes in the gut microbiota composition are unlikely to contribute to reproductive isolation in these passerine birds.
- Keywords
- Diet, Gut microbiome, Habitat use, Luscinia, Passerines, Reproductive isolation,
- MeSH
- Ecosystem MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Gastrointestinal Microbiome * MeSH
- Sympatry MeSH
- Songbirds * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH
The X and Z sex chromosomes play a disproportionately large role in intrinsic postzygotic isolation. The underlying mechanisms of this large X/Z effect are, however, still poorly understood. Here we tested whether faster rates of molecular evolution caused by more intense positive selection or genetic drift on the Z chromosome could contribute to the large Z effect in two closely related passerine birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). We found that the two species differ in patterns of molecular evolution on the Z chromosome. The Z chromosome of L. megarhynchos showed lower levels of within-species polymorphism and an excess of non-synonymous polymorphisms relative to non-synonymous substitutions. This is consistent with increased levels of genetic drift on this chromosome and may be attributed to more intense postcopulatory sexual selection acting on L. megarhynchos males as was indicated by significantly longer sperm and higher between-male variation in sperm length in L. megarhynchos compared to L. luscinia. Interestingly, analysis of interspecific gene flow on the Z chromosome revealed relatively lower levels of introgression from L. megarhynchos to L. luscinia than vice versa, indicating that the Z chromosome of L. megarhynchos accumulated more hybrid incompatibilities. Our results are consistent with the view that postcopulatory sexual selection may reduce the effective population size of the Z chromosome and thus lead to stronger genetic drift on this chromosome in birds. This can result in relatively faster accumulation of hybrid incompatibilities on the Z and thus contribute to the large Z effect.
- MeSH
- Species Specificity MeSH
- Genetic Variation MeSH
- Genetic Drift MeSH
- Evolution, Molecular MeSH
- Sex Chromosomes genetics MeSH
- Mating Preference, Animal * MeSH
- Spermatozoa cytology MeSH
- Gene Flow MeSH
- Genetic Speciation MeSH
- Songbirds genetics physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Hybrid sterility is a common first step in the evolution of postzygotic reproductive isolation. According to Haldane's Rule, it affects predominantly the heterogametic sex. While the genetic basis of hybrid male sterility in organisms with heterogametic males has been studied for decades, the genetic basis of hybrid female sterility in organisms with heterogametic females has received much less attention. We investigated the genetic basis of reproductive isolation in two closely related avian species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (L. luscinia), that hybridize in a secondary contact zone and produce viable hybrid progeny. In accordance with Haldane's Rule, hybrid females are sterile, while hybrid males are fertile, allowing gene flow to occur between the species. Using transcriptomic data from multiple individuals of both nightingale species, we identified genomic islands of high differentiation (FST ) and of high divergence (Dxy ), and we analysed gene content and patterns of molecular evolution within these islands. Interestingly, we found that these islands were enriched for genes related to female meiosis and metabolism. The islands of high differentiation and divergence were also characterized by higher levels of linkage disequilibrium than the rest of the genome in both species indicating that they might be situated in genomic regions of low recombination. This study provides one of the first insights into genetic basis of hybrid female sterility in organisms with heterogametic females.
- Keywords
- birds, genomic islands of differentiation, hybrid female sterility, oogenesis, speciation,
- MeSH
- Chromosomes genetics MeSH
- Genetic Variation MeSH
- Genetic Association Studies * MeSH
- Genomic Islands genetics MeSH
- Hybridization, Genetic * MeSH
- Meiosis genetics MeSH
- Evolution, Molecular MeSH
- Linkage Disequilibrium genetics MeSH
- Infertility, Female genetics MeSH
- Songbirds genetics MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH