Nejvíce citovaný článek - PubMed ID 29481949
Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps)
Claviceps (Clavicipitaceae, Hypocreales) was erected in 1853, although ergotism had been well-known for a much longer time. By 2000, about 70 taxa had been described in Claviceps, of which eight species and six varieties were based on Japanese type or authentic specimens. Most of these Japanese Claviceps taxa are based on lost specimens or have invalid names, which means many species practically exist only in the scientific literature. The ambiguous identities of these species have hindered taxonomic resolution of the genus Claviceps. Consequently, we sought and collected more than 300 fresh specimens in search of the lost Japanese ergots. Multilocus phylogenetic analyses based on DNA sequences from LSU, TEF-1α, TUB2, Mcm7, and RPB2 revealed the phylogenetic relationships between the Japanese specimens and known Claviceps spp., as well as the presence of biogeographic patterns. Based on the phylogenetic analysis, host range and morphology, we re-evaluated Japanese Claviceps and recognised at least 21 species in Japan. Here we characterised 14 previously described taxa and designated neo-, lecto- and epi-types for C. bothriochloae, C. imperatae, C. litoralis, C. microspora, C. panicoidearum and C. yanagawaensis. Two varieties were elevated to species rank with designated neotypes, i.e. C. agropyri and C. kawatanii. Six new species, C. miscanthicola, C. oplismeni, C. palustris, C. phragmitis, C. sasae and C. tandae were proposed and described. Taxonomic novelties: New species: Claviceps miscanthicola E. Tanaka, Claviceps oplismeni E. Tanaka, Claviceps palustris E. Tanaka, Claviceps phragmitis E. Tanaka, Claviceps sasae E. Tanaka, Claviceps tandae E. Tanaka; New status and combination: Claviceps agropyri (Tanda) E. Tanaka, Claviceps kawatanii (Tanda) E. Tanaka; Typifications (basionyms): Lecto- and epitypification: Claviceps yanagawaensis Togashi; Neotypifications: Claviceps purpurea var. agropyri Tanda, Claviceps bothriochloae Tanda & Y. Muray, Claviceps imperatae Tanda & Kawat., Claviceps microspora var. kawatanii Tanda, Claviceps litoralis Kawat., Claviceps microspora Tanda, Claviceps panicoidearum Tanda & Y. Harada; Resurrection: Claviceps queenslandica Langdon. Citation: Tanaka E, Tanada K, Hosoe T, Shrestha B, Kolařík M, Liu M (2023). In search of lost ergots: phylogenetic re-evaluation of Claviceps species in Japan and their biogeographic patterns revealed. Studies in Mycology 106: 1-39. doi: 10.3114/sim.2022.106.01.
- Klíčová slova
- Clavicipitaceae, Hypocreales, Neotypification, New taxa, Phylogeny, Systematics, Taxonomy,
- Publikační typ
- časopisecké články MeSH
Fungal endophytes occurring in grapevine (Vitis vinifera L.) are usually important sources of various compounds with biological activities with great potential for use in agriculture. Nevertheless, many species isolated from this plant belong to the genera Fusarium, Alternaria, or Aspergillus, all of which are well-known to produce mycotoxins. Our study is focused on the assessment of the toxinogenic potential of fungal endophytes isolated from vineyards in the Czech Republic. In total, 20 endophytic fungal species were cultivated in wine must, and 57 mycotoxins of different classes were analysed by liquid chromatography coupled with mass spectrometry. As a result, alternariol, tentoxin, meleagrin, roquefortine C, gliotoxin, and verruculogen were detected in the culture medium, of which verruculogen followed by gliotoxin were the most frequent (present in 90 and 40% of samples, respectively) and most concentrated (up to thousands ng/mL). The alternaria mycotoxins alternariol and tentoxin were detected not only in Alternaria sp. cultures, but traces of these mycotoxins were also quantified in the Diatripe and Epicoccum cultures. Meleagrin and roquefortine C were detected in Didymella sancta and Penicillium crustosum, gliotoxin was detected in Alternaria sp., Didymella sp., Aureobasidium pullulans, Cladosporium herbarum, Penicillium crustosum and Pleurophoma ossicola, and verruculogen was quantified in 99% of endophytic isolates investigated. The potential of endophytes to produce mycotoxins should be carefully checked, specifically in cases where they are intended for the purpose of V. vinifera growing.
- Klíčová slova
- endophytes, liquid chromatography, mass spectrometry, microscopic filamentous fungi, mycotoxins,
- MeSH
- endofyty * MeSH
- houby metabolismus MeSH
- mykotoxiny metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- Vitis mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mykotoxiny MeSH
- regulátory růstu rostlin MeSH
Ergot fungi (Claviceps spp.) are infamous for producing sclerotia containing a wide spectrum of ergot alkaloids (EA) toxic to humans and animals, making them nefarious villains in the agricultural and food industries, but also treasures for pharmaceuticals. In addition to three classes of EAs, several species also produce paspaline-derived indole diterpenes (IDT) that cause ataxia and staggers in livestock. Furthermore, two other types of alkaloids, i.e., loline (LOL) and peramine (PER), found in Epichloë spp., close relatives of Claviceps, have shown beneficial effects on host plants without evidence of toxicity to mammals. The gene clusters associated with the production of these alkaloids are known. We examined genomes of 53 strains of 19 Claviceps spp. to screen for these genes, aiming to understand the evolutionary patterns of these genes across the genus through phylogenetic and DNA polymorphism analyses. Our results showed (1) varied numbers of eas genes in C. sect. Claviceps and sect. Pusillae, none in sect. Citrinae, six idt/ltm genes in sect. Claviceps (except four in C. cyperi), zero to one partial (idtG) in sect. Pusillae, and four in sect. Citrinae, (2) two to three copies of dmaW, easE, easF, idt/ltmB, itd/ltmQ in sect. Claviceps, (3) frequent gene gains and losses, and (4) an evolutionary hourglass pattern in the intra-specific eas gene diversity and divergence in C. purpurea.
- Klíčová slova
- ergot alkaloids, ergot fungi, gene divergence, gene diversity, indole diterpenes, phylogeny, secondary metabolites,
- MeSH
- Claviceps genetika metabolismus MeSH
- fylogeneze MeSH
- geny hub genetika MeSH
- indolové alkaloidy izolace a purifikace MeSH
- molekulární evoluce MeSH
- multigenová rodina MeSH
- námelové alkaloidy biosyntéza MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- indolové alkaloidy MeSH
- námelové alkaloidy MeSH
The genus Aciculosporium (Clavicipitaceae, Hypocreales, Ascomycota)was established in 1908 for A. take , which is the causal fungus of witches' broom of bamboo. Although the original description was valid at that time, a type specimen for A. take has not been designated. To standardize the use of this genus and species name, a neotypification and reference specimen of A. take are proposed. Multilocus phylogenetic analyses based on DNA sequences from 28S rDNA, TEF, Tub2, Mcm7, and RPB2 revealed that A.sasicola is from a different lineage to A. take, and other specimens from wavyleaf basket grass (Oplismenus undulatifolius) represent a distinct species proposed here as Aciculosporium oplismeni sp. nov. Chemical analysis using mass spectrometry and nuclear magnetic resonance spectroscopy showed that A. take produces four proline-containing cyclic dipeptides, which are moieties of ergot alkaloids. However, ergot alkaloids, lolines, peramine, indole-diterpenes, and lolitrem were not detected in the culture solvent. This study offers clarification of the lineage and morphology of this genus.
- Klíčová slova
- Aciculosporium oplismeni, Claviceps, Ergot alkaloids, Hypocreales, Witches' broom,
- Publikační typ
- časopisecké články MeSH
Ergot, fungal genus Claviceps, are worldwide distributed grass pathogens known for their production of toxic ergot alkaloids (EAs) and the great agricultural impact they have on both cereal crop and farm animal production. EAs are traditionally considered as the only factor responsible for ergot toxicity. Using broad sampling covering 13 ergot species infecting wild or agricultural grasses (including cereals) across Europe, USA, New Zealand, and South Africa we showed that the content of ergochrome pigments were comparable to the content of EAs in sclerotia. While secalonic acids A-C (SAs), the main ergot ergochromes (ECs), are well known toxins, our study is the first to address the question about their contribution to overall ergot toxicity. Based on our and published data, the importance of SAs in acute intoxication seems to be negligible, but the effect of chronic exposure needs to be evaluated. Nevertheless, they have biological activities at doses corresponding to quantities found in natural conditions. Our study highlights the need for a re-evaluation of ergot toxicity mechanisms and further studies of SAs' impact on livestock production and food safety.
- Klíčová slova
- Claviceps, cereals, ergochromes, ergot alkaloids, food safety, mycotoxins, secalonic acid, tetrahydroxanthones,
- MeSH
- apoptóza účinky léků MeSH
- Claviceps chemie MeSH
- HeLa buňky MeSH
- Jurkat buňky MeSH
- lidé MeSH
- mitochondrie účinky léků MeSH
- mykotoxiny analýza farmakologie toxicita MeSH
- námelové alkaloidy analýza toxicita MeSH
- viabilita buněk účinky léků MeSH
- xantheny analýza toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ergochromes MeSH Prohlížeč
- mykotoxiny MeSH
- námelové alkaloidy MeSH
- xantheny MeSH