Most cited article - PubMed ID 29573424
Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating
In heating experiments with leaves, the temperature at which dark-level F0 chlorophyll a fluorescence begins to rise, Tcrit, is widely used as an indicator of photosystem II thermotolerance. However, little is known about how Tcrit correlates with irreversible leaf tissue damage. Young and mature leaves of the tropical tree species Calophyllum inophyllum were heated stepwise from 30 to 55°C, at 1°C min-1. Tcrit was 47°C in young leaves and 49°C in mature leaves. Contrary to the higher Tcrit in mature leaves, heating to 55°C elicited greater tissue damage in mature than in young leaves. Young and mature leaves heated to their respective Tcrit or Tcrit + 2°C exhibited no or little tissue necrosis after 14 d of post-culture. It is concluded that measurements of the temperature-dependent F0 fluorescence rise underestimate the thermal thresholds above which significant irreversible leaf damage occurs.
- Keywords
- chlorophyll a fluorescence, global warming, heat tolerance, necrosis, tropical trees,
- MeSH
- Calophyllum * physiology metabolism MeSH
- Chlorophyll A MeSH
- Chlorophyll metabolism MeSH
- Fluorescence MeSH
- Plant Leaves * physiology metabolism MeSH
- Necrosis MeSH
- Trees physiology MeSH
- Thermotolerance * physiology MeSH
- Tropical Climate MeSH
- Hot Temperature * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll A MeSH
- Chlorophyll MeSH
General volatile anesthetic diethyl ether blocks sensation and responsive behavior not only in animals but also in plants. Here, using a combination of RNA-seq and proteomic LC-MS/MS analyses, we investigated the effect of anesthetic diethyl ether on gene expression and downstream consequences in plant Arabidopsis thaliana. Differential expression analyses revealed reprogramming of gene expression under anesthesia: 6,168 genes were upregulated, 6,310 genes were downregulated, while 9,914 genes were not affected in comparison with control plants. On the protein level, out of 5,150 proteins identified, 393 were significantly upregulated and 227 were significantly downregulated. Among the highest significantly downregulated processes in etherized plants were chlorophyll/tetrapyrrole biosynthesis and photosynthesis. However, measurements of chlorophyll a fluorescence did not show inhibition of electron transport through photosystem II. The most significantly upregulated process was the response to heat stress (mainly heat shock proteins, HSPs). Using transgenic A. thaliana expressing APOAEQUORIN, we showed transient increase of cytoplasmic calcium level [Ca2+]cyt in response to diethyl ether application. In addition, cell membrane permeability for ions also increased under anesthesia. The plants pre-treated with diethyl ether, and thus with induced HSPs, had increased tolerance of photosystem II to subsequent heat stress through the process known as cross-tolerance or priming. All these data indicate that diethyl ether anesthesia may partially mimic heat stress in plants through the effect on plasma membrane.
- Keywords
- Arabidopsis, anesthesia, chlorophyll, diethyl ether, heat shock proteins, heat stress, photosystem II,
- Publication type
- Journal Article MeSH