Nejvíce citovaný článek - PubMed ID 29649853
Phenotypic characteristics of the p.Asn215Ser (p.N215S) GLA mutation in male and female patients with Fabry disease: A multicenter Fabry Registry study
Fabry disease is a progressive, X-linked lysosomal disorder caused by reduced or absent α-galactosidase A activity due to GLA variants. The effects of migalastat were examined in a cohort of 125 Fabry patients with migalastat-amenable GLA variants in the followME Pathfinders registry (EUPAS20599), an ongoing, prospective, patient-focused registry evaluating outcomes for current Fabry disease treatments. We report annualised estimated glomerular filtration rate (eGFR) and Fabry-associated clinical events (FACEs) in a cohort of patients who had received ≥3 years of migalastat treatment in a real-world setting. As of August 2022, 125 patients (60% male) had a mean migalastat exposure of 3.9 years. At enrolment, median age was 58 years (males, 57; females, 60) with a mean eGFR of 83.7 mL/min/1.73 m2 (n = 122; males, 83.7; females, 83.8) and a median left ventricular mass index of 115.1 g/m2 (n = 61; males, 131.2; females, 98.0). Mean (95% confidence interval) eGFR annualised rate of change in the overall cohort (n = 116) was -0.9 (-10.8, 9.9) mL/min/1.73 m2/year with a similar rate of change observed across patients with varying levels of kidney function at enrolment. Despite population age and baseline morbidity, 80% of patients did not experience a FACE during the mean 3.9 years of migalastat exposure. The incidence of renal, cardiac, and cerebrovascular events was 2.0, 83.2, and 4.1 events per 1000 patient-years, respectively. These data support a role of migalastat in preserving renal function and multisystem effectiveness during ≥3 years of migalastat treatment in this real-world Fabry population.
- Klíčová slova
- Fabry disease, migalastat, real world evidence,
- MeSH
- 1-deoxynojirimycin * analogy a deriváty terapeutické užití MeSH
- alfa-galaktosidasa genetika MeSH
- dospělí MeSH
- Fabryho nemoc * farmakoterapie komplikace MeSH
- hodnoty glomerulární filtrace účinky léků MeSH
- kohortové studie MeSH
- ledviny účinky léků MeSH
- lidé středního věku MeSH
- lidé MeSH
- prospektivní studie MeSH
- registrace MeSH
- senioři MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-deoxynojirimycin * MeSH
- alfa-galaktosidasa MeSH
- migalastat MeSH Prohlížeč
AIMS: Fabry disease (FD) is a rare X-linked genetic disorder caused by α-galactosidase A (AGALA) deficiency. Whereas 'classic' variant has multisystemic manifestation, the more recently described 'later-onset' variant is characterized by predominant cardiac involvement that often mimics hypertrophic cardiomyopathy (HCM). METHODS AND RESULTS: Consecutive unrelated patients with HCM were screened for FD in 16 (out of 17) cardiac centres in the Czech Republic covering specialized cardiology care from June 2017 to December 2018. AGALA activity and globotriaosylsphingosine (lyso-Gb3 ) levels were measured in all subjects using the dry blood spot method. FD was suspected in male patients with AGALA activity <1.2 μmol/h/L and in females with either low AGALA activity or lyso-Gb3 > 3.5 ng/mL. Positive screening results were confirmed by genetic testing. We evaluated 589 patients (390 males, 66%) with HCM (mean maximal myocardial thickness 19.1 ± 4.3 mm). The average age was 58.4 ± 14.7 years. In total, 17 patients (11 males, 6 females) had a positive screening result, and subsequently, six of them (four males and two females) had a genetically confirmed pathogenic GLA mutation (total prevalence of 1.02%). Five of these patients were carrying the p.N215S mutation known to cause a typical later-onset cardiac FD. CONCLUSIONS: We confirmed the prevalence of FD repeatedly reported in previous screening programmes (approximately 1% irrespective of gender) in a non-selected HCM population in Central Europe. Our findings advocate a routine screening for FD in all adult patients with HCM phenotype including both genders. The dry blood spot method used led to identification of clearly pathogenic variants.
- Klíčová slova
- Alpha-galactosidase, Fabry disease, Genetic testing, Hypertrophic cardiomyopathy, Lyso-Gb3, Screening,
- MeSH
- alfa-galaktosidasa genetika MeSH
- dospělí MeSH
- Fabryho nemoc * diagnóza epidemiologie genetika MeSH
- genetické testování MeSH
- hypertrofická kardiomyopatie * diagnóza epidemiologie genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- alfa-galaktosidasa MeSH
BACKGROUND: Fabry disease (FD, OMIM #301500) is a rare, progressive, X-linked, inherited genetic disease caused by a functional deficiency of lysosomal α-galactosidase, leading to the accumulation of glycosphingolipids in virtually all of the body's cell types and fluids. Patients with rare genetic diseases and non-specific symptoms often experience substantial diagnostic delays, which can negatively impact the prompt initiation of treatment. If FD is not treated specifically, end organ damage (such as chronic renal failure, hypertrophic cardiomyopathy with arrhythmia, and strokes) impairs quality of life and reduces life expectancy. PATIENTS AND METHODS: For 83 consecutive patients with FD referred to the Russian reference center for lysosomal storage diseases, family trees were built and genetic testing (cascade genotyping) was offered to family members. RESULTS: The pathogenic GLA variant associated with FD was identified for all 83 probands. Family testing using cascade genotyping enabled the identification of 165 additional cases of FD among the tested 331 at-risk family members. DISCUSSION: This is the first study to have described family screening in a large Russian cohort of patients with FD and chronic kidney disease. Raising awareness of FD among clinicians is important for earlier diagnosis and specific treatment.
- Klíčová slova
- Fabry disease, cascade genotyping, early diagnosis, family screening, rare diseases,
- MeSH
- alfa-galaktosidasa genetika MeSH
- chronická renální insuficience * diagnóza genetika MeSH
- Fabryho nemoc * diagnóza genetika metabolismus MeSH
- genetické testování MeSH
- glykosfingolipidy MeSH
- kvalita života MeSH
- lidé MeSH
- mutace MeSH
- rodina MeSH
- vzácné nemoci genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alfa-galaktosidasa MeSH
- glykosfingolipidy MeSH
BACKGROUND: Family genetic testing of patients newly diagnosed with a rare genetic disease can improve early diagnosis of family members, allowing patients to receive disease-specific therapies when available. Fabry disease, an X-linked lysosomal storage disorder caused by pathogenic variants in GLA, can lead to end-stage renal disease, cardiac arrhythmias, and stroke. Diagnostic delays are common due to the rarity of the disease and non-specificity of early symptoms. Newborn screening and screening of at-risk populations, (e.g., patients with hypertrophic cardiomyopathy or undiagnosed nephropathies) can identify individuals with Fabry disease. Subsequent cascade genotyping of family members may disclose a greater number of affected individuals, often at younger age than they would have been diagnosed otherwise. METHODS: We conducted a literature search to identify all published data on family genetic testing for Fabry disease, and discussed these data, experts' own experiences with family genetic testing, and the barriers to this type of screening that are present in their respective countries. RESULTS: There are potential barriers that make implementation of family genetic testing challenging in some countries. These include associated costs and low awareness of its importance, and cultural and societal issues. Regionally, there are barriers associated with population educational levels, national geography and infrastructures, and a lack of medical geneticists. CONCLUSION: In this review, the worldwide experience of an international group of experts of Fabry disease highlights the issues faced in the family genetic testing of patients affected with rare genetic diseases.
- Klíčová slova
- Fabry disease, at-risk populations screening, cascade genotyping, early diagnosis, family genetic testing, pedigree drawing, rare disease,
- MeSH
- Fabryho nemoc diagnóza genetika MeSH
- genetické testování metody normy MeSH
- lidé MeSH
- rodokmen MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Fabry disease (FD) is an X-linked lysosomal storage disorder due to reduced or undetectable α-galactosidase A (AGAL-A) enzyme activity caused by pathogenic variants in the AGAL-A gene (GLA). Tissue and organ changes are caused by widespread progressive accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). The classical form of FD is multisystemic with cutaneous (angiokeratomas), neurological (peripheral neuropathy, premature stroke), renal (proteinuria and renal insufficiency), and cardiac involvement. Later onset variants may be limited to the heart. The objective of this review is to summarize the current knowledge on cardiac manifestations of FD and effects of targeted therapy. Cardiac involvement is characterized by progressive hypertrophy, fibrosis, arrhythmias, heart failure and sudden cardiac death (SCD). Targeted therapy is based on enzyme replacement therapy (ERT). Recently, small molecular chaperone, migalastat, became available for patients carrying amenable pathogenic GLA variants. The management of cardiac complications requires a complex approach. Several measures differ from standard clinical guidelines. Betablockers should be used with caution due to bradycardia risk, amiodarone avoided if possible, and anticoagulation used from the first appearance of atrial fibrillation. In Fabry cardiomyopathy SCD calculators are inappropriate. The awareness of FD manifestations is essential for early identification of patients and timely treatment initiation.
- Klíčová slova
- Fabry disease (FD), enzyme replacement therapy (ERT), hypertrophic cardiomyopathy (HCM), molecular chaperones,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
AIMS: Long-term treatment effect studies in large female Fabry patient groups are challenging to design because of phenotype heterogeneity and lack of appropriate comparison groups, and have not been reported. We compared long-term cardiomyopathy and kidney function outcomes after agalsidase beta treatment with preceding treatment-naive outcomes. METHODS AND RESULTS: Self-controlled pretreatment and post-treatment comparison (piecewise mixed linear modelling) included Fabry female patients ≥18 years at treatment initiation who received agalsidase beta (0.9-1.1 mg/kg every other week) for ≥2 years, with ≥2 pretreatment and ≥2 post-treatment outcome measurements during 10-year follow-up. Left ventricular posterior wall thickness (LVPWT)/interventricular septal thickness (IVST) and estimated glomerular filtration rate (eGFR, Chronic Kidney Disease Epidemiology Collaboration creatinine equation) analyses included 42 and 86 patients, respectively, aged 50.0 and 46.3 years at treatment initiation, respectively. LVPWT and IVST increased pretreatment (follow-up 3.5 years) but stabilized during 3.6 years of treatment (LVPWT: n = 38, slope difference [95% confidence interval (CI)] = -0.41 [-0.68, -0.15] mm/year, Ppre-post difference <0.01; IVST: n = 38, slope difference = -0.32 [-0.67, 0.02] mm/year, Ppre-post difference = 0.07). These findings were not modified by renal involvement or antiproteinuric agent use. Compared with the treatment-naive period (follow-up 3.6 years), eGFR decline remained modest and stabilized within normal ranges during 4.1 years of treatment (slope difference, 95% CI: -0.13 [-1.15, 0.89] mL/min/1.73m2 /year, Ppre-post difference = 0.80). CONCLUSIONS: Cardiac hypertrophy, progressing during pretreatment follow-up, appeared to stabilize during sustained agalsidase beta treatment. eGFR decline remained within normal ranges. This suggests that treatment may prevent further Fabry-related progression of cardiomyopathy in female patients and maintain normal kidney function.
- Klíčová slova
- Agalsidase beta, Cardiomyopathy, Enzyme replacement therapy, Fabry disease, Female patients, Kidney function,
- MeSH
- alfa-galaktosidasa MeSH
- enzymová substituční terapie MeSH
- Fabryho nemoc * komplikace diagnóza farmakoterapie MeSH
- izoenzymy MeSH
- kardiomyopatie * MeSH
- ledviny MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- agalsidase beta MeSH Prohlížeč
- alfa-galaktosidasa MeSH
- izoenzymy MeSH