Most cited article - PubMed ID 29653518
Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data
σ factors are considered as positive regulators of gene expression. Here we reveal the opposite, inhibitory role of these proteins. We used a combination of molecular biology methods and computational modeling to analyze the regulatory activity of the extracytoplasmic σE factor from Streptomyces coelicolor. The direct activator/repressor function of σE was then explored by experimental analysis of selected promoter regions in vivo. Additionally, the σE interactome was defined. Taken together, the results characterize σE, its regulation, regulon, and suggest its direct inhibitory function (as a repressor) in gene expression, a phenomenon that may be common also to other σ factors and organisms.
- MeSH
- Computer Simulation MeSH
- Sigma Factor genetics MeSH
- Streptomyces coelicolor * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Sigma Factor MeSH
The exponential increase in the number of conducted studies combined with the development of sequencing methods have led to an enormous accumulation of partially processed experimental data in the past two decades. Here, we present an approach using literature-mined data complemented with gene expression kinetic modeling and promoter sequence analysis. This approach allowed us to identify the regulon of Bacillus subtilis sigma factor SigB of RNA polymerase (RNAP) specifically expressed during germination and outgrowth. SigB is critical for the cell's response to general stress but is also expressed during spore germination and outgrowth, and this specific regulon is not known. This approach allowed us to (i) define a subset of the known SigB regulon controlled by SigB specifically during spore germination and outgrowth, (ii) identify the influence of the promoter sequence binding motif organization on the expression of the SigB-regulated genes, and (iii) suggest additional sigma factors co-controlling other SigB-dependent genes. Experiments then validated promoter sequence characteristics necessary for direct RNAP-SigB binding. In summary, this work documents the potential of computational approaches to unravel new information even for a well-studied system; moreover, the study specifically identifies the subset of the SigB regulon, which is activated during germination and outgrowth.
- Keywords
- Bacillus subtilis, SigB, computational modeling, gene regulatory networks, promoter sequence analysis,
- Publication type
- Journal Article MeSH
HrdB in streptomycetes is a principal sigma factor whose deletion is lethal. This is also the reason why its regulon has not been investigated so far. To overcome experimental obstacles, for investigating the HrdB regulon, we constructed a strain whose HrdB protein was tagged by an HA epitope. ChIP-seq experiment, done in 3 repeats, identified 2137 protein-coding genes organized in 337 operons, 75 small RNAs, 62 tRNAs, 6 rRNAs and 3 miscellaneous RNAs. Subsequent kinetic modeling of regulation of protein-coding genes with HrdB alone and with a complex of HrdB and a transcriptional cofactor RbpA, using gene expression time series, identified 1694 genes that were under their direct control. When using the HrdB-RbpA complex in the model, an increase of the model fidelity was found for 322 genes. Functional analysis revealed that HrdB controls the majority of gene groups essential for the primary metabolism and the vegetative growth. Particularly, almost all ribosomal protein-coding genes were found in the HrdB regulon. Analysis of promoter binding sites revealed binding motif at the -10 region and suggested the possible role of mono- or di-nucleotides upstream of the -10 element.
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- RNA, Bacterial genetics MeSH
- Chromatin Immunoprecipitation MeSH
- DNA, Bacterial chemistry metabolism MeSH
- DNA-Binding Proteins metabolism MeSH
- Gene Expression MeSH
- Genes, rRNA MeSH
- Kinetics MeSH
- Models, Genetic MeSH
- Promoter Regions, Genetic MeSH
- Gene Expression Regulation, Bacterial MeSH
- Regulon * MeSH
- RNA, Transfer genetics MeSH
- Sequence Analysis, DNA MeSH
- Sigma Factor metabolism MeSH
- Streptomyces coelicolor genetics metabolism MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- RNA, Bacterial MeSH
- DNA, Bacterial MeSH
- DNA-Binding Proteins MeSH
- HrdB protein, Streptomyces MeSH Browser
- RNA, Transfer MeSH
- Sigma Factor MeSH