Most cited article - PubMed ID 29773666
Ancient genomes document multiple waves of migration in Southeast Asian prehistory
BACKGROUND: Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS: We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS: This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
- Keywords
- Flanders, Low countries, Medieval, Migration, Palaeo-genomics, Plague, Urbanization,
- MeSH
- History, Medieval MeSH
- Genetic Variation MeSH
- Genome, Human MeSH
- Genomics MeSH
- Humans MeSH
- Plague epidemiology history genetics MeSH
- Genetics, Population MeSH
- Urbanization * history MeSH
- Check Tag
- History, Medieval MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Geographicals
- Belgium MeSH
Western Eurasia witnessed several large-scale human migrations during the Holocene1-5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
- MeSH
- History, Ancient MeSH
- Diploidy MeSH
- Genome, Human * MeSH
- Genotype MeSH
- Ice Cover MeSH
- Humans MeSH
- Hunting history MeSH
- Metagenomics * MeSH
- Human Migration * history MeSH
- Genetics, Population * MeSH
- Agriculture history MeSH
- Check Tag
- History, Ancient MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Black Sea MeSH
- Europe ethnology MeSH
- Asia, Western MeSH
f-statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. Not only are they guaranteed to allow robust tests of the fits of proposed models of population history to data when analyzing full genome sequencing data-that is, all single nucleotide polymorphisms (SNPs) in the individuals being analyzed-but they are also guaranteed to allow robust tests of models for SNPs ascertained as polymorphic in a population that is an outgroup in a phylogenetic sense to all groups being analyzed. True "outgroup ascertainment" is in practice impossible in humans because our species has arisen from a substructured ancestral population that does not descend from a homogeneous ancestral population going back many hundreds of thousands of years into the past. However, initial studies suggested that non-outgroup-ascertainment schemes might produce robust enough results using f-statistics, and that motivated widespread fitting of models to data using non-outgroup-ascertained SNP panels such as the "Affymetrix Human Origins array" which has been genotyped on thousands of modern individuals from hundreds of populations, or the "1240k" in-solution enrichment reagent which has been the source of about 70% of published genome-wide data for ancient humans. In this study, we show that while analyses of population history using such panels work well for studies of relationships among non-African populations and one African outgroup, when co-modeling more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans), fitting of f-statistics to such SNP sets is expected to frequently lead to false rejection of true demographic histories, and failure to reject incorrect models. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, has limited statistical power and retains important biases. However, by carrying out simulations of diverse demographic histories, we show that bias in inferences based on f-statistics can be minimized by ascertaining on variants common in a union of diverse African groups; such ascertainment retains high statistical power while allowing co-analysis of archaic and modern groups.
- MeSH
- African People * genetics MeSH
- Biological Variation, Population genetics MeSH
- Black People genetics MeSH
- Demography * history MeSH
- Phylogeny * MeSH
- Genotype MeSH
- Polymorphism, Single Nucleotide * genetics MeSH
- Humans MeSH
- Chromosome Mapping MeSH
- Neanderthals genetics MeSH
- Models, Statistical MeSH
- Bias MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Thailand is a country where over 60 languages from five language families (Austroasiatic, Austronesian, Hmong-Mien, Kra-Dai, and Sino-Tibetan) are spoken. The Kra-Dai language family is the most prevalent, and Thai, the official language of the country, belongs to it. Previous genome-wide studies on Thailand populations revealed a complex population structure and put some hypotheses forward concerning the population history of the country. However, many published populations have not been co-analyzed, and some aspects of population history were not explored adequately. In this study, we employ new methods to re-analyze published genome-wide genetic data on Thailand populations, with a focus on 14 Kra-Dai-speaking groups. Our analyses reveal South Asian ancestry in Kra-Dai-speaking Lao Isan and Khonmueang, and in Austroasiatic-speaking Palaung, in contrast to a previous study in which the data were generated. We support the admixture scenario for the formation of Kra-Dai-speaking groups from Thailand who harbor both Austroasiatic-related ancestry and Kra-Dai-related ancestry from outside of Thailand. We also provide evidence of bidirectional admixture between Southern Thai and Nayu, an Austronesian-speaking group from Southern Thailand. Challenging some previously reported genetic analyses, we reveal a close genetic relationship between Nayu and Austronesian-speaking groups from Island Southeast Asia (ISEA).
- MeSH
- Asian * ethnology genetics MeSH
- Asian People * ethnology genetics MeSH
- Genome-Wide Association Study MeSH
- Language * MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Asia, Southeastern ethnology MeSH
- Thailand MeSH
f -statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. These statistics can provide strong evidence for either admixture or cladality, which can be robust to substantial rates of errors or missing data. f -statistics are guaranteed to be unbiased under "SNP ascertainment" (analyzing non-randomly chosen subsets of single nucleotide polymorphisms) only if it relies on a population that is an outgroup for all groups analyzed. However, ascertainment on a true outgroup that is not co-analyzed with other populations is often impractical and uncommon in the literature. In this study focused on practical rather than theoretical aspects of SNP ascertainment, we show that many non-outgroup ascertainment schemes lead to false rejection of true demographic histories, as well as to failure to reject incorrect models. But the bias introduced by common ascertainments such as the 1240K panel is mostly limited to situations when more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans) or non-human outgroups are co-modelled, for example, f 4 -statistics involving one non-African group, two African groups, and one archaic group. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, cannot fix all these problems since for some classes of f -statistics it is not a clean outgroup ascertainment, and in other cases it demonstrates relatively low power to reject incorrect demographic models since it provides a relatively small number of variants common in anatomically modern humans. And due to the paucity of high-coverage archaic genomes, archaic individuals used for ascertainment often act as sole representatives of the respective groups in an analysis, and we show that this approach is highly problematic. By carrying out large numbers of simulations of diverse demographic histories, we find that bias in inferences based on f -statistics introduced by non-outgroup ascertainment can be minimized if the derived allele frequency spectrum in the population used for ascertainment approaches the spectrum that existed at the root of all groups being co-analyzed. Ascertaining on sites with variants common in a diverse group of African individuals provides a good approximation to such a set of SNPs, addressing the great majority of biases and also retaining high statistical power for studying population history. Such a "pan-African" ascertainment, although not completely problem-free, allows unbiased exploration of demographic models for the widest set of archaic and modern human populations, as compared to the other ascertainment schemes we explored.
- Publication type
- Journal Article MeSH
- Preprint MeSH
Indian cultural influence is remarkable in present-day Mainland Southeast Asia (MSEA), and it may have stimulated early state formation in the region. Various present-day populations in MSEA harbor a low level of South Asian ancestry, but previous studies failed to detect such ancestry in any ancient individual from MSEA. In this study, we discovered a substantial level of South Asian admixture (ca. 40-50%) in a Protohistoric individual from the Vat Komnou cemetery at the Angkor Borei site in Cambodia. The location and direct radiocarbon dating result on the human bone (95% confidence interval is 78-234 calCE) indicate that this individual lived during the early period of Funan, one of the earliest states in MSEA, which shows that the South Asian gene flow to Cambodia started about a millennium earlier than indicated by previous published results of genetic dating relying on present-day populations. Plausible proxies for the South Asian ancestry source in this individual are present-day populations in Southern India, and the individual shares more genetic drift with present-day Cambodians than with most present-day East and Southeast Asian populations.
- MeSH
- Asian People MeSH
- South Asian People MeSH
- Humans MeSH
- Genetics, Population * MeSH
- DNA, Ancient * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Cambodia MeSH
- Names of Substances
- DNA, Ancient * MeSH
The great ethnolinguistic diversity found today in mainland Southeast Asia (MSEA) reflects multiple migration waves of people in the past. Maritime trading between MSEA and India was established at the latest 300 BCE, and the formation of early states in Southeast Asia during the first millennium CE was strongly influenced by Indian culture, a cultural influence that is still prominent today. Several ancient Indian-influenced states were located in present-day Thailand, and various populations in the country are likely to be descendants of people from those states. To systematically explore Indian genetic heritage in MSEA populations, we generated genome-wide SNP data (using the Affymetrix Human Origins array) for 119 present-day individuals belonging to 10 ethnic groups from Thailand and co-analyzed them with published data using PCA, ADMIXTURE, and methods relying on f-statistics and on autosomal haplotypes. We found low levels of South Asian admixture in various MSEA populations for whom there is evidence of historical connections with the ancient Indian-influenced states but failed to find this genetic component in present-day hunter-gatherer groups and relatively isolated groups from the highlands of Northern Thailand. The results suggest that migration of Indian populations to MSEA may have been responsible for the spread of Indian culture in the region. Our results also support close genetic affinity between Kra-Dai-speaking (also known as Tai-Kadai) and Austronesian-speaking populations, which fits a linguistic hypothesis suggesting cladality of the two language families.
- MeSH
- Asian People genetics MeSH
- Ethnicity genetics MeSH
- Genetic Variation genetics MeSH
- Haplotypes genetics MeSH
- Language MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Humans MeSH
- Genetics, Population methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Geographicals
- India ethnology MeSH
- Asia, Southeastern ethnology MeSH
- Thailand ethnology MeSH