Most cited article - PubMed ID 29957382
Up-regulation of μ-, δ- and κ-opioid receptors in concanavalin A-stimulated rat spleen lymphocytes
This work aimed to test the effect of 7-day exposure of rats to multifunctional enkephalin analogs LYS739 and LYS744 at doses of 3 mg/kg and 10 mg/kg on the protein composition of rat spleen lymphocytes, brain cortex, and hippocampus. Alterations of proteome induced by LYS739 and LYS744 were compared with those elicited by morphine. The changes in rat proteome profiles were analyzed by label-free quantification (MaxLFQ). Proteomic analysis indicated that the treatment with 3 mg/kg of LYS744 caused significant alterations in protein expression levels in spleen lymphocytes (45), rat brain cortex (31), and hippocampus (42). The identified proteins were primarily involved in RNA processing and the regulation of cytoskeletal dynamics. In spleen lymphocytes, the administration of the higher 10 mg/kg dose of both enkephalin analogs caused major, extensive modifications in protein expression levels: LYS739 (119) and LYS744 (182). Among these changes, the number of proteins associated with immune responses and apoptotic processes was increased. LYS739 treatment resulted in the highest number of alterations in the rat brain cortex (152) and hippocampus (45). The altered proteins were functionally related to the regulation of transcription and cytoskeletal reorganization, which plays an essential role in neuronal plasticity. Administration with LYS744 did not increase the number of altered proteins in the brain cortex (26) and hippocampus (26). Our findings demonstrate that the effect of κ-OR full antagonism of LYS744 is opposite in the central nervous system and the peripheral region (spleen lymphocytes).
- Keywords
- chronic pain treatment, label-free quantification, morphine, multifunctional enkephalin analogs, proteomic analysis, rat brain, rat spleen lymphocytes,
- Publication type
- Journal Article MeSH
The observation of the immunomodulatory effects of opioid drugs opened the discussion about possible mechanisms of action and led researchers to consider the presence of opioid receptors (OR) in cells of the immune system. To date, numerous studies analyzing the expression of OR subtypes in animal and human immune cells have been performed. Some of them confirmed the expression of OR at both the mRNA and protein level, while others did not detect the receptor mRNA either. Although this topic remains controversial, further studies are constantly being published. The most recent articles suggested that the expression level of OR in human peripheral blood lymphocytes could help to evaluate the success of methadone maintenance therapy in former opioid addicts, or could serve as a biomarker for chronic pain diagnosis. However, the applicability of these findings to clinical practice needs to be verified by further investigations.
- Keywords
- addiction, chronic pain, immune cells, opioid drugs, opioid receptors, stem cells,
- MeSH
- Biomarkers MeSH
- Chronic Pain drug therapy etiology metabolism MeSH
- Immune System drug effects immunology metabolism MeSH
- Stem Cells drug effects metabolism MeSH
- Humans MeSH
- Analgesics, Opioid pharmacology MeSH
- Receptors, Opioid genetics metabolism MeSH
- Gene Expression Regulation * MeSH
- Inflammation complications etiology metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biomarkers MeSH
- Analgesics, Opioid MeSH
- Receptors, Opioid MeSH
Morphine is an analgesic drug therapeutically administered to relieve pain. However, this drug has numerous side effects, which include impaired healing and regeneration after injuries or tissue damages. It suggests negative effects of morphine on stem cells which are responsible for tissue regeneration. Therefore, we studied the impact of morphine on the properties and functional characteristics of human bone marrow-derived mesenchymal stem cells (MSCs). The presence of μ-, δ- and κ-opioid receptors (OR) in untreated MSCs, and the enhanced expression of OR in MSCs pretreated with proinflammatory cytokines, was demonstrated using immunoblotting and by flow cytometry. Morphine modified in a dose-dependent manner the MSC phenotype, inhibited MSC proliferation and altered the ability of MSCs to differentiate into adipocytes or osteoblasts. Furthermore, morphine rather enhanced the expression of genes for various immunoregulatory molecules in activated MSCs, but significantly inhibited the production of the vascular endothelial growth factor, hepatocyte growth factor or leukemia inhibitory factor. All of these observations are underlying the selective impact of morphine on stem cells, and offer an explanation for the mechanisms of the negative effects of opioid drugs on stem cells and regenerative processes after morphine administration or in opioid addicts.
- Keywords
- Cytokines, Gene expression, Growth factors, Mesenchymal stem cells, Morphine, Opioid receptors,
- MeSH
- Cell Differentiation drug effects MeSH
- Humans MeSH
- Mesenchymal Stem Cells metabolism pathology MeSH
- Morphine pharmacology MeSH
- Osteoblasts metabolism MeSH
- Receptors, Opioid metabolism MeSH
- Adipocytes metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Morphine MeSH
- Receptors, Opioid MeSH