Most cited article - PubMed ID 29978954
The deletion of M4 muscarinic receptors increases motor activity in females in the dark phase
Muscarinic receptors (mAChRs) are typical members of the G protein-coupled receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists or agonists; therefore, the analysis of receptor subtypes is complicated, and misinterpretations can occur. Usually, when researchers mainly specialized in CNS and peripheral functions aim to study mAChR involvement in behavior, learning, spinal locomotor networks, biological rhythms, cardiovascular physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia, and Parkinson's disease, they use orthosteric ligands and they do not use allosteric ligands. Moreover, they usually rely on manufacturers' claims that could be misleading. This review aimed to call the attention of researchers not deeply focused on mAChR pharmacology to this fact. Importantly, limited selective binding is not only a property of mAChRs but is a general attribute of most neurotransmitter receptors. In this review, we want to give an overview of the most common off-targets for established mAChR ligands. In this context, an important point is a mention the tremendous knowledge gap on off-targets for novel compounds compared to very well-established ligands. Therefore, we will summarize reported affinities and give an outline of strategies to investigate the subtype's function, thereby avoiding ambiguous results. Despite that, the multitargeting nature of drugs acting also on mAChR could be an advantage when treating such diseases as schizophrenia. Antipsychotics are a perfect example of a multitargeting advantage in treatment. A promising strategy is the use of allosteric ligands, although some of these ligands have also been shown to exhibit limited selectivity. Another new direction in the development of muscarinic selective ligands is functionally selective and biased agonists. The possible selective ligands, usually allosteric, will also be listed. To overcome the limited selectivity of orthosteric ligands, the recommended process is to carefully examine the presence of respective subtypes in specific tissues via knockout studies, carefully apply "specific" agonists/antagonists at appropriate concentrations and then calculate the probability of a specific subtype involvement in specific functions. This could help interested researchers aiming to study the central nervous system functions mediated by the muscarinic receptor.
- Keywords
- allosteric, multitarget, muscarinic agonist, muscarinic antagonist, muscarinic receptors, orthosteric,
- Publication type
- Journal Article MeSH
- Review MeSH
The deletion of M4 muscarinic receptors (MRs) changes biological rhythm parameters in females. Here, we searched for the mechanisms responsible for these changes. We performed biological rhythm analysis in two experiments: in experiment 1, the mice [C57Bl/6NTac (WT) and M4 MR -/- mice (KO)] were first exposed to a standard LD regime (12/12-h light/dark cycle) for 8 days and then subsequently exposed to constant darkness (for 24 h/day, DD regime) for another 16 days. In experiment 2, the mice (after the standard LD regime) were exposed to the DD regime and to one light pulse (zeitgeber time 14) on day 9. We also detected M1 MRs in brain areas implicated in locomotor biological rhythm regulation. In experiment 1, the biological rhythm activity curves differed: the period (τ, duration of diurnal cycle) was shorter in the DD regime. Moreover, the day mean, mesor (midline value), night mean and their difference were higher in KO animals. The time in which the maximal slope occurred was lower in the DD regime than in the LD regime in both WT and KO but was lower in KO than in WT mice. In experiment 2, there were no differences in biological rhythm parameters between WT and KO mice. The densities of M1 MRs in the majority of areas implicated in locomotor biological rhythm were low. A significant amount of M1 MR was found in the striatum. These results suggest that although core clock output is changed by M4 MR deletion, the structures involved in biological rhythm regulation in WT and KO animals are likely the same, and the most important areas are the striatum, thalamus and intergeniculate leaflet.
- Keywords
- Biorhythm, Intergeniculate leaflet, Locomotor activity, M1 muscarinic receptors, M4 muscarinic receptors,
- MeSH
- Actigraphy MeSH
- Locomotion physiology MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Neostriatum physiology MeSH
- Periodicity * MeSH
- Receptor, Muscarinic M4 genetics physiology MeSH
- Thalamus physiology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Receptor, Muscarinic M4 MeSH
Mice are nocturnal animals. Surprisingly, the majority of physiological/pharmacological studies are performed in the morning, i.e., in the non-active phase of their diurnal cycle. We have shown recently that female (not male) mice lacking the M4 muscarinic receptors (MR, M4KO) did not differ substantially in locomotor activity from their wild-type counterparts (C57Bl/6Tac) during the inactive period. Increased locomotion has been shown in the active phase of their diurnal cycle. We compared the effects of scopolamine, oxotremorine, and cocaine on locomotor response, hypothermia and spontaneous behavior in the open field arena in the morning (9:00 AM) and in the evening (9:00 PM) in WT and in C57Bl/6NTac mice lacking the M4 MR. Furthermore, we also studied morning vs. evening densities of muscarinic, GABAA, D1-like, D2-like, NMDA and kainate receptors using autoradiography in the motor, somatosensory and visual cortex and in the striatum, thalamus, hippocampus, pons, and medulla oblongata. At 9:00 AM, scopolamine induced an increase in motor activity in WT and in M4KO, yet no significant increase was observed at 9:00 PM. Oxotremorine induced hypothermic effects in both WT and M4KO. Hypothermic effects were more evident in WT than in M4KO. Hypothermia in both cases was more pronounced at 9:00 AM than at 9:00 PM. Cocaine increased motor activity when compared to saline. There was no difference in behavior in the open field between WT and M4KO when tested at 9:00 AM; however, at 9:00 PM, activity of M4KO was doubled in comparison to that of WT. Both WT and KO animals spent less time climbing in their active phase. Autoradiography revealed no significant morning vs. evening difference. Altogether, our results indicate the necessity of comparing morning vs. evening drug effects.
- Keywords
- M4 muscarinic receptor, biorhythm, cocaine, motor activity, open field, oxotremorine, scopolamine, temperature,
- Publication type
- Journal Article MeSH