Most cited article - PubMed ID 30063056
Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates
Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase. Inhibition of RNA-depending RNA polymerases from Japanese Encephalitis virus was observed through formation of covalent cross-link which was partially identified by MS/MS analysis. Thus, the squaramate-linked NTP analogs are useful building blocks for the synthesis of reactive RNA probes for bioconjugations with primary amines and cross-linking with lysine residues.
- Publication type
- Journal Article MeSH
A series of quinolino-fused 7-deazapurine (pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline) ribonucleosides were designed and synthesized. The synthesis of the key 11-chloro-pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline was based on the Negishi cross-coupling of iodoquinoline with zincated 4,6-dichloropyrimidine followed by azidation and thermal or photochemical cyclization. Vorbrüggen glycosylation of the tetracyclic heterocycle followed by cross-coupling or substitution reactions at position 11 gave the desired set of final nucleosides that showed moderate to weak cytostatic activity and fluorescent properties. The corresponding fused adenosine derivative was converted to the triphosphate and successfully incorporated to RNA using in vitro transcription with T7 RNA polymerase.
- Publication type
- Journal Article MeSH
Innovative approaches to controlled nucleobase-modified RNA synthesis are urgently needed to support RNA biology exploration and to synthesize potential RNA therapeutics. Here we present a strategy for enzymatic construction of nucleobase-modified RNA based on primer-dependent engineered thermophilic DNA polymerases - SFM4-3 and TGK. We demonstrate introduction of one or several different base-modified nucleotides in one strand including hypermodified RNA containing all four modified nucleotides bearing four different substituents, as well as strategy for primer segment removal. We also show facile site-specific or segmented introduction of fluorophores or other functional groups at defined positions in variety of RNA molecules, including structured or long mRNA. Intriguing translation efficacy of single-site modified mRNAs underscores the necessity to study isolated modifications placed at designer positions to disentangle their biological effects and enable development of improved mRNA therapeutics. Our toolbox paves the way for more precise dissecting RNA structures and functions, as well as for construction of diverse types of base-functionalized RNA for therapeutic applications and diagnostics.
- MeSH
- DNA-Directed DNA Polymerase * genetics MeSH
- RNA, Messenger genetics MeSH
- Nucleotides chemistry MeSH
- RNA * genetics chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA-Directed DNA Polymerase * MeSH
- RNA, Messenger MeSH
- Nucleotides MeSH
- RNA * MeSH
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
- Keywords
- Bioconjugations, Cross-Linking, Modified RNA, Proteins, RNA Polymerases,
- MeSH
- DNA-Directed RNA Polymerases metabolism MeSH
- DNA metabolism MeSH
- Nucleotides * metabolism MeSH
- RNA-Binding Proteins MeSH
- Cross-Linking Reagents MeSH
- RNA Probes MeSH
- RNA * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- chloroacetamide MeSH Browser
- DNA-Directed RNA Polymerases MeSH
- DNA MeSH
- Nucleotides * MeSH
- RNA-Binding Proteins MeSH
- Cross-Linking Reagents MeSH
- RNA Probes MeSH
- RNA * MeSH
Cyclic dinucleotides (CDNs) are second messengers that activate stimulator of interferon genes (STING). The cGAS-STING pathway plays a promising role in cancer immunotherapy. Here, we describe the synthesis of CDNs containing 7-substituted 7-deazapurine moiety. We used mouse cyclic GMP-AMP synthase and bacterial dinucleotide synthases for the enzymatic synthesis of CDNs. Alternatively, 7-(het)aryl 7-deazapurine CDNs were prepared by Suzuki-Miyaura cross-couplings. New CDNs were tested in biochemical and cell-based assays for their affinity to human STING. Eight CDNs showed better activity than 2'3'-cGAMP, the natural ligand of STING. The effect on cytokine and chemokine induction was also evaluated. The best activities were observed for CDNs bearing large aromatic substituents that point above the CDN molecule. We solved four X-ray structures of complexes of new CDNs with human STING. We observed π-π stacking interactions between the aromatic substituents and Tyr240 that are involved in the stabilization of CDN-STING complexes.
- MeSH
- Cytokines MeSH
- Interferons MeSH
- Humans MeSH
- Ligands MeSH
- Membrane Proteins * metabolism MeSH
- Mice MeSH
- Nucleotides, Cyclic * chemistry MeSH
- Nucleotidyltransferases MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 7-deazapurine MeSH Browser
- Cytokines MeSH
- Interferons MeSH
- Ligands MeSH
- Membrane Proteins * MeSH
- Nucleotides, Cyclic * MeSH
- Nucleotidyltransferases MeSH