Most cited article - PubMed ID 30070495
Causality, dynamical systems and the arrow of time
Uncovering causal interdependencies from observational data is one of the great challenges of a nonlinear time series analysis. In this paper, we discuss this topic with the help of an information-theoretic concept known as Rényi's information measure. In particular, we tackle the directional information flow between bivariate time series in terms of Rényi's transfer entropy. We show that by choosing Rényi's parameter α, we can appropriately control information that is transferred only between selected parts of the underlying distributions. This, in turn, is a particularly potent tool for quantifying causal interdependencies in time series, where the knowledge of "black swan" events, such as spikes or sudden jumps, are of key importance. In this connection, we first prove that for Gaussian variables, Granger causality and Rényi transfer entropy are entirely equivalent. Moreover, we also partially extend these results to heavy-tailed α-Gaussian variables. These results allow establishing a connection between autoregressive and Rényi entropy-based information-theoretic approaches to data-driven causal inference. To aid our intuition, we employed the Leonenko et al. entropy estimator and analyzed Rényi's information flow between bivariate time series generated from two unidirectionally coupled Rössler systems. Notably, we find that Rényi's transfer entropy not only allows us to detect a threshold of synchronization but it also provides non-trivial insight into the structure of a transient regime that exists between the region of chaotic correlations and synchronization threshold. In addition, from Rényi's transfer entropy, we could reliably infer the direction of coupling and, hence, causality, only for coupling strengths smaller than the onset value of the transient regime, i.e., when two Rössler systems are coupled but have not yet entered synchronization.
- Keywords
- Rényi entropy, Rényi transfer entropy, Rössler system, multivariate time series,
- Publication type
- Journal Article MeSH
The inference of causal relations between observable phenomena is paramount across scientific disciplines; however, the means for such enterprise without experimental manipulation are limited. A commonly applied principle is that of the cause preceding and predicting the effect, taking into account other circumstances. Intuitively, when the temporal order of events is reverted, one would expect the cause and effect to apparently switch roles. This was previously demonstrated in bivariate linear systems and used in design of improved causal inference scores, while such behaviour in linear systems has been put in contrast with nonlinear chaotic systems where the inferred causal direction appears unchanged under time reversal. The presented work explores the conditions under which the causal reversal happens-either perfectly, approximately, or not at all-using theoretical analysis, low-dimensional examples, and network simulations, focusing on the simplified yet illustrative linear vector autoregressive process of order one. We start with a theoretical analysis that demonstrates that a perfect coupling reversal under time reversal occurs only under very specific conditions, followed up by constructing low-dimensional examples where indeed the dominant causal direction is even conserved rather than reversed. Finally, simulations of random as well as realistically motivated network coupling patterns from brain and climate show that level of coupling reversal and conservation can be well predicted by asymmetry and anormality indices introduced based on the theoretical analysis of the problem. The consequences for causal inference are discussed.
- Keywords
- brain network, causality, climate network, random networks, reversed time series, temporal symmetry, time reversal, vector autoregressive process,
- Publication type
- Journal Article MeSH
An information-theoretic approach for detecting causality and information transfer was applied to phases and amplitudes of oscillatory components related to different time scales and obtained using the wavelet transform from a time series generated by the Epileptor model. Three main time scales and their causal interactions were identified in the simulated epileptic seizures, in agreement with the interactions of the model variables. An approach consisting of wavelet transform, conditional mutual information estimation, and surrogate data testing applied to a single time series generated by the model was demonstrated to be successful in the identification of all directional (causal) interactions between the three different time scales described in the model. Thus, the methodology was prepared for the identification of causal cross-frequency phase-phase and phase-amplitude interactions in experimental and clinical neural data.
- Keywords
- Granger causality, epilepsy model, information transfer, interactions, multiscale dynamics,
- Publication type
- Journal Article MeSH
An information-theoretic approach for detecting causality and information transfer is used to identify interactions of solar activity and interplanetary medium conditions with the Earth's magnetosphere-ionosphere systems. A causal information transfer from the solar wind parameters to geomagnetic indices is detected. The vertical component of the interplanetary magnetic field (Bz) influences the auroral electrojet (AE) index with an information transfer delay of 10 min and the geomagnetic disturbances at mid-latitudes measured by the symmetric field in the H component (SYM-H) index with a delay of about 30 min. Using a properly conditioned causality measure, no causal link between AE and SYM-H, or between magnetospheric substorms and magnetic storms can be detected. The observed causal relations can be described as linear time-delayed information transfer.
- Keywords
- causality, information transfer, solar wind-magnetosphere–ionosphere system, space weather, time reversal, time series,
- Publication type
- Journal Article MeSH
Detection of the temporal reversibility of a given process is an interesting time series analysis scheme that enables the useful characterisation of processes and offers an insight into the underlying processes generating the time series. Reversibility detection measures have been widely employed in the study of ecological, epidemiological and physiological time series. Further, the time reversal of given data provides a promising tool for analysis of causality measures as well as studying the causal properties of processes. In this work, the recently proposed Compression-Complexity Causality (CCC) measure (by the authors) is shown to be free of the assumption that the "cause precedes the effect", making it a promising tool for causal analysis of reversible processes. CCC is a data-driven interventional measure of causality (second rung on the Ladder of Causation) that is based on Effort-to-Compress (ETC), a well-established robust method to characterize the complexity of time series for analysis and classification. For the detection of the temporal reversibility of processes, we propose a novel measure called the Compressive Potential based Asymmetry Measure. This asymmetry measure compares the probability of the occurrence of patterns at different scales between the forward-time and time-reversed process using ETC. We test the performance of the measure on a number of simulated processes and demonstrate its effectiveness in determining the asymmetry of real-world time series of sunspot numbers, digits of the transcedental number π and heart interbeat interval variability.