Nejvíce citovaný článek - PubMed ID 30102251
Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG
Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.
During the lockdown of universities and the COVID-Pandemic most students were restricted to their homes. Novel and instigating teaching methods were required to improve the learning experience and so recent implementations of the annual PhysioNet/Computing in Cardiology (CinC) Challenges posed as a reference. For over 20 years, the challenges have proven repeatedly to be of immense educational value, besides leading to technological advances for specific problems. In this paper, we report results from the class 'Artificial Intelligence in Medicine Challenge', which was implemented as an online project seminar at Technical University Darmstadt, Germany, and which was heavily inspired by the PhysioNet/CinC Challenge 2017 'AF Classification from a Short Single Lead ECG Recording'. Atrial fibrillation is a common cardiac disease and often remains undetected. Therefore, we selected the two most promising models of the course and give an insight into the Transformer-based DualNet architecture as well as into the CNN-LSTM-based model and finally a detailed analysis for both. In particular, we show the model performance results of our internal scoring process for all submitted models and the near state-of-the-art model performance for the two named models on the official 2017 challenge test set. Several teams were able to achieve F1scores above/close to 90% on a hidden test-set of Holter recordings. We highlight themes commonly observed among participants, and report the results from the self-assessed student evaluation. Finally, the self-assessment of the students reported a notable increase in machine learning knowledge.
- Klíčová slova
- atrial fibrillation, deep learning, electrocardiogram, gamification,
- MeSH
- algoritmy MeSH
- COVID-19 * diagnóza MeSH
- elektrokardiografie metody MeSH
- fibrilace síní * diagnóza MeSH
- kontrola infekčních nemocí MeSH
- lidé MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The electroencephalogram (EEG) is a cornerstone of neurophysiological research and clinical neurology. Historically, the classification of EEG as showing normal physiological or abnormal pathological activity has been performed by expert visual review. The potential value of unbiased, automated EEG classification has long been recognized, and in recent years the application of machine learning methods has received significant attention. A variety of solutions using convolutional neural networks (CNN) for EEG classification have emerged with impressive results. However, interpretation of CNN results and their connection with underlying basic electrophysiology has been unclear. This paper proposes a CNN architecture, which enables interpretation of intracranial EEG (iEEG) transients driving classification of brain activity as normal, pathological or artifactual. The goal is accomplished using CNN with long short-term memory (LSTM). We show that the method allows the visualization of iEEG graphoelements with the highest contribution to the final classification result using a classification heatmap and thus enables review of the raw iEEG data and interpret the decision of the model by electrophysiology means.
- MeSH
- artefakty MeSH
- datové soubory jako téma MeSH
- deep learning * MeSH
- elektroencefalografie klasifikace přístrojové vybavení metody MeSH
- lidé MeSH
- ROC křivka MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- validační studie MeSH