Most cited article - PubMed ID 30121305
The bacteriome at the onset of type 1 diabetes: A study from four geographically distant African and Asian countries
SCOPE: This multi-omic study investigates the bidirectional interactions between gut microbiota and silymarin metabolism, highlighting the differential effects across various age groups. Silymarin, the extract from Silybum marianum (milk thistle), is commonly used for its hepatoprotective effects. METHODS AND RESULTS: An in vitro fermentation colon model was used with microbiota from 20 stool samples obtained from healthy donors divided into two age groups. A combination of three analytical advanced techniques, namely proton nuclear magnetic resonance (1H NMR), next-generation sequencing (NGS), and liquid chromatography-mass spectrometry (LC-MS) was used to determine silymarin microbial metabolites over 24 h, overall metabolome, and microbiota composition. Silymarin at a low diet-relevant dose of 50 µg mL-1 significantly altered gut microbiota metabolism, reducing short-chain fatty acid (acetate, butyrate, propionate) production, glucose utilization, and increasing alpha-diversity. Notably, the study reveals age-related differences in silymarin catabolism. Healthy elderly donors (70-80 years) exhibited a significant increase in a specific catabolite associated with Oscillibacter sp., whereas healthy young donors (12-45 years) showed a faster breakdown of silymarin components, particularly isosilybin B, which is associated with higher abundance of Faecalibacterium and Erysipelotrichaceae UCG-003. CONCLUSION: This study provides insights into microbiome functionality in metabolizing dietary flavonolignans, highlighting implications for age-specific nutritional strategies, and advancing our understanding of dietary (poly)phenol metabolism.
- Keywords
- age‐related differences, gut microbiota, multi‐Omics analysis, polyphenols, silymarin metabolism,
- MeSH
- Child MeSH
- Adult MeSH
- Feces microbiology MeSH
- Fermentation MeSH
- Colon * microbiology metabolism drug effects MeSH
- Fatty Acids, Volatile metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Silymarin * pharmacology MeSH
- Gastrointestinal Microbiome * drug effects physiology MeSH
- Healthy Volunteers MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fatty Acids, Volatile MeSH
- Silymarin * MeSH
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
- Keywords
- T1DM, T2DM, antidiabetic drugs, diabetes mellitus, gut microbiota,
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Blastocystis is a human gut symbiont of yet undefined clinical significance. In a set of faecal samples collected from asymptomatic children of six distant populations, we first assessed the community profiles of protist 18S rDNA and then characterized Blastocystis subtypes and tested Blastocystis association with the faecal bacteriome community. METHODS: Stool samples were collected from 244 children and young persons (mean age 11.3 years, interquartile range 8.1-13.7) of six countries (Azerbaijan 51 subjects, Czechia 52, Jordan 40, Nigeria 27, Sudan 59 and Tanzania 15). The subjects showed no symptoms of infection. Amplicon profiling of the 18S rDNA was used for verification that Blastocystis was the most frequent protist, whereas specific real-time PCR showed its prevalence and quantity, and massive parallel amplicon sequencing defined the Blastocystis subtypes. The relation between Blastocystis and the stool bacteriome community was characterized using 16S rDNA profiling. RESULTS: Blastocystis was detected by specific PCR in 36% (88/244) stool samples and was the most often observed faecal protist. Children from Czechia and Jordan had significantly lower prevalence than children from the remaining countries. The most frequent subtype was ST3 (49%, 40/81 sequenced samples), followed by ST1 (36%) and ST2 (25%). Co-infection with two different subtypes was noted in 12% samples. The faecal bacteriome had higher richness in Blastocystis-positive samples, and Blastocystis was associated with significantly different community composition regardless of the country (p < 0.001 in constrained redundancy analysis). Several taxa differed with Blastocystis positivity or quantity: two genera of Ruminococcaceae were more abundant, while Bifidobacterium, Veillonella, Lactobacillus and several other genera were undrerrepresented. CONCLUSIONS: Asymptomatic children frequently carry Blastocystis, and co-infection with multiple distinct subtypes is not exceptional. Prevalence and quantity of the organism clearly differ among populations. Blastocystis is linked to both faecal bacteriome diversity and its composition.
- Keywords
- Africa, Asia, Bacteriome, Blastocystis, Type 1 diabetes,
- MeSH
- Asymptomatic Infections epidemiology MeSH
- Blastocystis classification genetics isolation & purification MeSH
- Blastocystis Infections epidemiology parasitology MeSH
- Child MeSH
- Feces parasitology MeSH
- Genetic Variation MeSH
- Humans MeSH
- Adolescent MeSH
- Prevalence MeSH
- DNA, Protozoan genetics MeSH
- DNA, Ribosomal genetics MeSH
- Gastrointestinal Microbiome genetics MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Azerbaijan epidemiology MeSH
- Czechoslovakia epidemiology MeSH
- Jordan epidemiology MeSH
- Nigeria epidemiology MeSH
- Sudan epidemiology MeSH
- Tanzania epidemiology MeSH
- Names of Substances
- DNA, Protozoan MeSH
- DNA, Ribosomal MeSH