Most cited article - PubMed ID 30143263
Induction of phenolic compounds by UV and PAR is modulated by leaf ontogeny and barley genotype
Photosynthetically active radiation (PAR) is an important environmental cue inducing the production of many secondary metabolites involved in plant oxidative stress avoidance and tolerance. To examine the complex role of PAR irradiance and specific spectral components on the accumulation of phenolic compounds (PheCs), we acclimated spring barley (Hordeum vulgare) to different spectral qualities (white, blue, green, red) at three irradiances (100, 200, 400 µmol m-2 s-1). We confirmed that blue light irradiance is essential for the accumulation of PheCs in secondary barley leaves (in UV-lacking conditions), which underpins the importance of photoreceptor signals (especially cryptochrome). Increasing blue light irradiance most effectively induced the accumulation of B-dihydroxylated flavonoids, probably due to the significantly enhanced expression of the F3'H gene. These changes in PheC metabolism led to a steeper increase in antioxidant activity than epidermal UV-A shielding in leaf extracts containing PheCs. In addition, we examined the possible role of miRNAs in the complex regulation of gene expression related to PheC biosynthesis.
- Keywords
- HPLC, UV tolerance, antioxidants, flavonoids, miRNA, photoprotection, secondary metabolism, spectral quality of light, spring barley (Hordeum vulgare), transcriptomics,
- MeSH
- Phenols metabolism MeSH
- Flavonoids metabolism MeSH
- Hordeum * genetics metabolism MeSH
- Plant Leaves genetics metabolism MeSH
- Light MeSH
- Ultraviolet Rays * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Phenols MeSH
- Flavonoids MeSH
Barley (Hordeum vulgare) accumulates phenolic compounds (PhCs), which play a key role in plant defense against environmental stressors as antioxidants or UV screening compounds. The influence of light and atmospheric CO2 concentration ([CO2]) on the accumulation and localization of PhCs in barley leaves was examined for two varieties with different tolerances to oxidative stress. PhC localization was visualized in vivo using fluorescence microscopy. Close relationships were found between fluorescence-determined localization of PhCs in barley leaves and PhC content estimated using liquid chromatography coupled with mass spectroscopy detection. Light intensity had the strongest effect on the accumulation of PhCs, but the total PhC content was similar at elevated [CO2], minimizing the differences between high and low light. PhCs localized preferentially near the surfaces of leaves, but under low light, an increasing allocation of PhCs in deeper mesophyll layers was observed. The PhC profile was significantly different between barley varieties. The relatively tolerant variety accumulated significantly more hydroxycinnamic acids, indicating that these PhCs may play a more prominent role in oxidative stress prevention. Our research presents novel evidence that [CO2] modulates the accumulation of PhCs in barley leaves. Mesophyll cells, rather than epidermal cells, were most responsive to environmental stimuli in terms of PhC accumulation.
- Keywords
- barley, elevated CO2, flavonoids, histochemical localization, hydroxybenzoic acids, hydroxycinnamic acids, image analysis, irradiance, phenolic compounds, plant stress,
- Publication type
- Journal Article MeSH