Most cited article - PubMed ID 30409881
Global pattern of nest predation is disrupted by climate change in shorebirds
A combination of life history traits and environmental conditions has been highlighted as the main drivers of avian breeding success. While drivers of breeding success are well known in some species, especially birds in northern, temperate regions; species in other parts of the world have received relatively little attention. In this study, we used a long-term dataset on breeding success of tropical plovers from south-west Madagascar to investigate whether nest survival changed over time and whether the drivers of nest survival were similar for multiple species breeding in the same arid habitat. In the 12-year period of 2009-2020, we monitored 2077 nests for three species with different breeding strategies: 1185 nests of Kittlitz's plovers (Anarhynchus pecuarius) with a flexible breeding strategy and uniparental care; and 565 nests of white-fronted plovers (A. marginatus) and 327 nests of Madagascar plovers (A. thoracicus) which both have biparental care. We found that nest survival was associated with a combination of clutch-size, age of nest and year among the three plover species. In addition, annual variation in climatic conditions associated with El Niño/La Niña events were included in the most supported survival models for Kittlitz's and white-fronted plovers, but the effects were not significant. Overall estimates of daily nest survival were similar for all three species: Kittlitz's plover: 0.950 ± 0.002 SE, Madagascar plover: 0.919 ± 0.007 SE, and white-fronted plover: 0.862 ± 0.047 SE. Estimates of nest success for the breeding season, based on increases in daily nest survival with the clutch age during the incubation periods (26 days for Kittlitz's plovers and 29 days for Madagascar and white-fronted plovers), were relatively low: Kittlitz's plover: 0.161 ± 0.056 SE, Madagascar plover: 0.287 ± 0.022 SE, and white-fronted plover: 0.228 ± 0.019 SE. All three species had a combination of factors affecting nest survival, both environmental and life history traits.
- Keywords
- Madagascar, clutch size, incubation, nest success, nest survival, reproductive strategies, shorebird, wader,
- Publication type
- Journal Article MeSH
Arctic environments are changing rapidly and if we are to understand the resilience of species to future changes, we need to investigate alterations in their life histories. Egg size and egg shape are key life-history traits, reflecting parental investment as well as influencing future reproductive success. Here we focus on egg characteristics in two Arctic shorebirds, the Dunlin (Calidris alpina) and the Temminck's stint (Calidris temminckii). Using egg photos that encompass their full breeding ranges, we show that egg characteristics exhibit significant longitudinal variations, and the variation in the monogamous species (Dunlin) is significantly greater than the polygamous species (Temminck's stint). Our finding is consistent with the recent "disperse-to-mate" hypothesis which asserts that polygamous species disperse further to find mates than monogamous species, and by doing so they create panmictic populations. Taken together, Arctic shorebirds offer excellent opportunities to understand evolutionary patterns in life history traits.
- Keywords
- Evolutionary biology, Ornithology, Zoology,
- Publication type
- Journal Article MeSH
Predation is the most common cause of nest failure in birds. While nest predation is relatively well studied in general, our knowledge is unevenly distributed across the globe and taxa, with, for example, limited information on shorebirds breeding in subtropics. Importantly, we know fairly little about the timing of predation within a day. Here, we followed 444 nests of the red-wattled lapwing (Vanellus indicus), a ground-nesting shorebird, for a sum of 7,828 days to estimate a nest predation rate, and continuously monitored 230 of these nests for a sum of 2,779 days to reveal how the timing of predation changes over the day and season in a subtropical desert. We found that 312 nests (70%) hatched, 76 nests (17%) were predated, 23 (5%) failed for other reasons, and 33 (7%) had an unknown fate. Daily predation rate was 0.95% (95%CrI: 0.76% - 1.19%), which for a 30-day long incubation period translates into ~25% (20% - 30%) chance of nest being predated. Such a predation rate is low compared to most other avian species. Predation events (N = 25) were evenly distributed across day and night, with a tendency for increased predation around sunrise, and evenly distributed also across the season, although night predation was more common later in the season, perhaps because predators reduce their activity during daylight to avoid extreme heat. Indeed, nests were never predated when midday ground temperatures exceeded 45℃. Whether the diel activity pattern of resident predators undeniably changes across the breeding season and whether the described predation patterns hold for other populations, species, and geographical regions await future investigations.
- Keywords
- continuous monitoring, diel pattern, diel timing, nest predation, predation rate, red‐wattled lapwing, shorebirds, survival analyses, timing of predation, waders,
- Publication type
- Journal Article MeSH
Linking population trends to species' traits is informative for the detection of the most important threatening factors and for assessing the effectiveness of conservation measures. Although some previous studies performed such an analysis at local to continental scales, the global-scale focus is the most relevant for conservation of the entire species. Here we evaluate information on global population trends of shorebirds, a widely distributed and ecologically diversified group, where some species connect different parts of the world by migration, while others are residents. Nowadays, shorebirds face rapid environmental changes caused by various human activities and climate change. Numerous signs of regional population declines have been recently reported in response to these threats. The aim of our study was to test whether breeding and non-breeding habitats, migratory behaviour (migrants vs. residents) and migration distance, breeding latitude, generation time and breeding range size mirror species' global population trends. We found that a majority of shorebird species have declined globally. After accounting for the influence of traits and species taxonomy, linear mixed-effects models showed that populations of migratory shorebirds decreased more than populations of residents. Besides that, declines were more frequent for species breeding at high latitudes of the Northern Hemisphere, but these patterns did not hold after excluding the non-migratory species. Our findings suggest that factors linked to migration, such as habitat loss as well as deterioration at stop-over or wintering sites and a pronounced climate change impact at high latitudes, are possible drivers of the observed worldwide population decreases.
- Keywords
- Climate change, Conservation, Habitat deterioration, Life history strategy, Migration flyway, Waders,
- MeSH
- Behavior, Animal physiology MeSH
- Ecosystem MeSH
- Climate Change MeSH
- Animal Migration physiology MeSH
- Population Dynamics MeSH
- Birds physiology MeSH
- Animal Distribution * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
When individuals breed more than once, parents are faced with the choice of whether to re-mate with their old partner or divorce and select a new mate. Evolutionary theory predicts that, following successful reproduction with a given partner, that partner should be retained for future reproduction. However, recent work in a polygamous bird, has instead indicated that successful parents divorced more often than failed breeders (Halimubieke et al. in Ecol Evol 9:10734-10745, 2019), because one parent can benefit by mating with a new partner and reproducing shortly after divorce. Here we investigate whether successful breeding predicts divorce using data from 14 well-monitored populations of plovers (Charadrius spp.). We show that successful nesting leads to divorce, whereas nest failure leads to retention of the mate for follow-up breeding. Plovers that divorced their partners and simultaneously deserted their broods produced more offspring within a season than parents that retained their mate. Our work provides a counterpoint to theoretical expectations that divorce is triggered by low reproductive success, and supports adaptive explanations of divorce as a strategy to improve individual reproductive success. In addition, we show that temperature may modulate these costs and benefits, and contribute to dynamic variation in patterns of divorce across plover breeding systems.
- MeSH
- Biological Evolution * MeSH
- Charadriiformes physiology MeSH
- Breeding MeSH
- Pair Bond MeSH
- Reproduction physiology MeSH
- Divorce MeSH
- Sexual Behavior, Animal physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Ground-nesting birds face many challenges to reproduce successfully, with nest predation being the main cause of reproductive failure. Visual predators such as corvids and egg-eating raptors, are among the most common causes of nest failure; thus, parental strategies that reduce the risk of visual nest predation should be favored by selection. To date, most research has focused on egg crypsis without considering adult crypsis, although in natural circumstances the eggs are covered by an incubating parent most of the time. Here we use a ground-nesting shorebird, the Kentish plover (Charadrius alexandrinus) as model species to experimentally test whether decoy parents influence nest predation. Using artificial nests with a male decoy, a female decoy or no decoy, we found that the presence of a decoy increased nest predation (N = 107 nests, p < 0.001). However, no difference was found in predation rates between nests with a male versus female decoy (p > 0.05). Additionally, we found that nests in densely vegetated habitats experienced higher survival compared to nests placed in sparsely vegetated habitats. Nest camera images, predator tracks and marks left on eggs identified the brown-necked raven (Corvus ruficollis) as the main visual nest predator. Our study suggests that the presence of incubating parents may enhance nest detectability to visual predators. However, parents may reduce the predation risk by placing a nest in sites where they are covered by vegetation. Our findings highlight the importance of nest site selection not only regarding egg crypsis but also considering incubating adult camouflage.
- MeSH
- Ecosystem MeSH
- Nesting Behavior physiology MeSH
- Population Density MeSH
- Ovum physiology MeSH
- Predatory Behavior physiology MeSH
- Resin Cements chemistry MeSH
- Birds physiology MeSH
- Reproduction physiology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Crypsis dual-cure adhesive MeSH Browser
- Resin Cements MeSH