Most cited article - PubMed ID 30481544
From biotechnology principles to functional and low-cost metallic bionanocatalysts
Pharmaceutical products are some of the most serious emergent pollutants in the environment, especially nowadays of the COVID-19 pandemic. In this study, nanogold-composite was prepared, and its catalytic activity for paracetamol degradation was investigated. Moreover, for the first time, recycled waste diatomite earth (WDE) from beer filtration was used for reproducible gold nanoparticle (Au NPs) preparation. We studied Au NPs by various psychical-chemical and analytical methods. Transmission and scanning electron microscopy were used for nanogold-composite morphology, size and shape characterization. Total element concentrations were determined using inductively coupled plasma mass and X-ray fluorescence spectrometry. X-ray powder diffraction analysis was used for crystal structure characterization of samples. Fourier transform infrared spectrometer was used to study the chemical changes before and after Au NP formation. The results revealed that the WDE served as both a reducing and a stabilizing agent for crystalline spherical 30 nm Au NPs as well as acting as a direct support matrix. The kinetics of paracetamol degradation was studied by high-performance liquid chromatography with a photodiode array detector. The conversion of paracetamol was 62% and 67% after 72 h in the absence or presence of light irradiation, respectively, with 0.0126 h-1 and 0.0148 h-1 reaction rate constants. The presented study demonstrates the successful use of waste material from the food industry for nanogold-composite preparation and its application as a promising catalyst in paracetamol removal.
- Keywords
- Biosynthesis, Catalyst, Nanogold-composite, Nanoparticles, Paracetamol, Reproducibility,
- MeSH
- COVID-19 * MeSH
- Metal Nanoparticles * chemistry MeSH
- Humans MeSH
- Pandemics MeSH
- Acetaminophen chemistry MeSH
- Gold chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetaminophen MeSH
- Gold MeSH
Nanobiotechnology is considered to be one of the fastest emerging fields. It is still a relatively new and exciting area of research with considerable potential for development. Among the inorganic nanomaterials, biogenically synthesized silver nanoparticles (bio-AgNPs) have been frequently used due to their unique physicochemical properties that result not only from their shape and size but also from surface coatings of natural origin. These properties determine antibacterial, antifungal, antiprotozoal, anticancer, anti-inflammatory, and many more activities of bio-AgNPs. This review provides the current state of knowledge on the methods and mechanisms of biogenic synthesis of silver nanoparticles as well as their potential applications in different fields such as medicine, food, agriculture, and industries.
- Keywords
- application, biodistribution, biosynthesis, silver nanoparticles, toxicity,
- Publication type
- Journal Article MeSH
- Review MeSH
Herein, Tilia sp. bract leachate was used as the reducing agent for Au nanoparticles (Au NPs) phytosynthesis. The colloidal properties of the prepared Au NPs were determined to confirm their stability over time, and the NPs were then used as active catalysts in soman nerve agent degradation. The Au NPs characterisation, reproducibility and stability studies were performed under transmission electron microscopy, ultraviolet visible spectroscopy and with ζ-potential measurements. The reaction kinetics was detected by gas chromatography coupled with mass spectrometry detector and solid-phase micro-extraction to confirm the Au NPs applicability in soman hydrolysis. The 'green' phytosynthetic formation of colloidal crystalline Au NPs with dominant quasi-spherical shape and 55 ± 10 nm diameter was successfully achieved, and there were no significant differences in morphology, ζ-potential or absorbance values observed during the 5-week period. This verified the prepared colloids' long-term stability. The soman nerve agent was degraded to non-toxic substances within 24 h, with 0.2156 h-1 reaction rate constant. These results confirmed bio-nanotechnology's great potential in preparation of stable and functional nanocatalysts for degradation of hazardous substances, including chemical warfare agents.
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH