Nejvíce citovaný článek - PubMed ID 30535646
Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene
Wheat and its close relatives have large and complex genomes, making gene cloning difficult. Nevertheless, developments in genomics over the past decade have made it more feasible. The large and complex genomes of cereals, especially bread wheat, have always been a challenge for gene mapping and cloning. Nevertheless, recent advances in genomics have led to significant progress in this field. Currently, high-quality reference sequences are available for major wheat species and their relatives. New high-throughput genotyping platforms and next-generation sequencing technologies combined with genome complexity reduction techniques and mutagenesis have opened new avenues for gene cloning. In this review, we provide a comprehensive overview of the genes cloned in wheat so far and discuss the strategies used for cloning these genes. We highlight the advantages and drawbacks of individual approaches and show how particular genomic progress contributed to wheat gene cloning. A wide range of new resources and approaches have led to a significant increase in the number of successful cloning projects over the past decade, demonstrating that it is now feasible to perform rapid gene cloning of agronomically important genes, even in a genome as large and complex as that of wheat.
INTRODUCTION: Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES: This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS: The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS: The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION: Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.
- Klíčová slova
- Crossovers, DNA methylation, Hotspot, Ph1 locus, Recombination, Wheat,
- MeSH
- chromatin * genetika MeSH
- chromozomy MeSH
- DNA MeSH
- pšenice * genetika MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin * MeSH
- DNA MeSH
Powdery mildew is one of the most devastating diseases of wheat which significantly decreases yield and quality. Identification of new sources of resistance and their implementation in breeding programs is the most effective way of disease control. Two major powdery mildew resistance loci conferring resistance to all races in seedling and adult plant stages were identified in the emmer wheat landrace GZ1. Their positions, effects, and transferability were verified using two linkage maps (1,510 codominant SNP markers) constructed from two mapping populations (276 lines in total) based on the resistant GZ1 line. The dominant resistance locus QPm.GZ1-7A was located in a 90 cM interval of chromosome 7AL and explains up to 20% of the trait variation. The recessive locus QPm.GZ1-2A, which provides total resistance, explains up to 40% of the trait variation and was located in the distal part of chromosome 2AL. The locus was saturated with 14 PCR-based markers and delimited to a 0.99 cM region which corresponds to 4.3 Mb of the cv. Zavitan reference genome and comprises 55 predicted genes with no apparent candidate for the QPm.GZ1-2A resistance gene. No recessive resistance gene or allele was located at the locus before, suggesting the presence of a new powdery mildew resistance gene in the GZ1. The mapping data and markers could be used for the implementation of the locus in breeding. Moreover, they are an ideal base for cloning and study of host-pathogen interaction pathways determined by the resistance genes.
- Klíčová slova
- GZ1, QTL mapping, emmer, powdery mildew (Blumeria graminis D. C. f. sp. tritici), resistance, wheat,
- Publikační typ
- časopisecké články MeSH
Powdery mildew (Blumeria graminis f. sp. tritici) is a common pathogen of bread wheat (Triticum aestivum L.), and genetic resistance is an effective and environmentally friendly method to reduce its adverse impact. The introgression of novel genes from wheat progenitors and related species can increase the diversity of disease resistance and accumulation of minor genes to improve the crop's resistance durability. To accomplish these two actions, host genotypes without major resistances should be preferably used. Therefore, the main aim of this study was to carry out seedling tests to detect such resistances in a set of wheat accessions from the Czech gene bank and to group the cultivars according to their phenotype. Ear progenies of 448 selected cultivars originating from 33 countries were inoculated with three isolates of the pathogen. Twenty-eight cultivars were heterogeneous, and 110 cultivars showed resistance to at least one isolate. Fifty-nine cultivars, mostly from Northwest Europe, were resistant to all three isolates were more than three times more frequently recorded in spring than in winter cultivars. Results will facilitate a rational and practical approach preferably using the set of cultivars without major resistances for both mentioned methods of breeding wheat cultivars resistant to powdery mildew.
- Klíčová slova
- Blumeria graminis f. sp. hordei, Blumeria graminis f. sp. tritici, infection response arrays, resistance postulation, single ear progenies,
- Publikační typ
- časopisecké články MeSH