Nejvíce citovaný článek - PubMed ID 30550840
Occurrence of virulence factors in Cronobacter sakazakii and Cronobacter malonaticus originated from clinical samples
The objective of this study was to use whole-genome sequencing (WGS) to screen for genes encoding for antibiotic resistance, fitness and virulence in Cronobacter sakazakii strains that had been isolated from food and powdered-milk-producing environments. Virulence (VGs) and antibiotic-resistance genes (ARGs) were detected with the Comprehensive Antibiotic Resistance Database (CARD) platform, ResFinder and PlasmidFinder tools. Susceptibility testing was performed using disk diffusion. Fifteen presumptive strains of Cronobacter spp. were identified by MALDI-TOF MS and ribosomal-MLST. Nine C. sakazakii strains were found in the meningitic pathovar ST4: two were ST83 and one was ST1. The C. sakazakii ST4 strains were further distinguished using core genome MLST based on 3678 loci. Almost all (93%) strains were resistant to cephalotin and 33% were resistant to ampicillin. In addition, 20 ARGs, mainly involved in regulatory and efflux antibiotics, were detected. Ninety-nine VGs were detected that encoded for OmpA, siderophores and genes involved in metabolism and stress. The IncFIB (pCTU3) plasmid was detected, and the prevalent mobile genetic elements (MGEs) were ISEsa1, ISEc52 and ISEhe3. The C. sakazakii isolates analyzed in this study harbored ARGs and VGs, which could have contributed to their persistence in powdered-milk-producing environments, and increase the risk of infection in susceptible population groups.
- Klíčová slova
- Cronobacter sakazakii, antibiotics resistance, environment, food, virulence genes, whole genome sequencing,
- Publikační typ
- časopisecké články MeSH
This study characterized five Cronobacter spp. and six Salmonella spp. strains that had been isolated from 155 samples of powdered infant formula (PIF) sold in Chile and manufactured in Chile and Mexico in 2018-2020. Two strains of Cronobacter sakazakii sequence type (ST) ST1 and ST31 (serotypes O:1 and O:2) and one strain of Cronobacter malonaticus ST60 (O:1) were identified. All Salmonella strains were identified as Salmonella Typhimurium ST19 (serotype O:4) by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST (cgMLST). The C. sakazakii and C. malonaticus isolates were resistant to cephalothin, whereas the Salmonella isolates were resistant to oxacillin and ampicillin. Nineteen antibiotic resistance genes were detected in the C. sakazakii and C. malonaticus isolates; the most prevalent were mcr-9.1, blaCSA , and blaCMA . In Salmonella, 30 genes encoding for aminoglycoside and cephalosporin resistance were identified, including aac(6')-Iaa, β-lactamases ampH, ampC1, and marA. In the Cronobacter isolates, 32 virulence-associated genes were detected by WGS and clustered as flagellar proteins, outer membrane proteins, chemotaxis, hemolysins, invasion, plasminogen activator, colonization, transcriptional regulator, survival in macrophages, use of sialic acid, and toxin-antitoxin genes. In the Salmonella strains, 120 virulence associated genes were detected, adherence, magnesium uptake, resistance to antimicrobial peptides, secretion system, stress protein, toxin, resistance to complement killing, and eight pathogenicity islands. The C. sakazakii and C. malonaticus strains harbored I-E and I-F CRISPR-Cas systems and carried Col(pHHAD28) and IncFIB(pCTU1) plasmids, respectively. The Salmonella strains harbored type I-E CRISPR-Cas systems and carried IncFII(S) plasmids. The presence of C. sakazakii and Salmonella in PIF is a health risk for infants aged less than 6 months. For this reason, sanitary practices should be reinforced for its production and retail surveillance.
- Klíčová slova
- CRISPR-Cas, Cronobacter malonaticus, Cronobacter sakazakii, Salmonella Typhimurium, powdered infant formula, resistance genes, virulence, whole-genome sequencing,
- Publikační typ
- časopisecké články MeSH
Cronobacter sakazakii is an enteropathogen that causes neonatal meningitis, septicemia, and necrotizing enterocolitis in preterm infants and newborns with a mortality rate of 15 to 80%. Powdered and dairy formulas (P-DF) have been implicated as major transmission vehicles and subsequently the presence of this pathogen in P-DF led to product recalls in Chile in 2017. The objective of this study was to use whole genome sequencing (WGS) and laboratory studies to characterize Cronobacter strains from the contaminated products. Seven strains were identified as C. sakazakii, and the remaining strain was Franconibacter helveticus. All C. sakazakii strains adhered to a neuroblastoma cell line, and 31 virulence genes were predicted by WGS. The antibiograms varied between strains. and included mcr-9.1 and bla CSA genes, conferring resistance to colistin and cephalothin, respectively. The C. sakazakii strains encoded I-E and I-F CRISPR-Cas systems, and carried IncFII(pECLA), Col440I, and Col(pHHAD28) plasmids. In summary, WGS enabled the identification of C. sakazakii strains and revealed multiple antibiotic resistance and virulence genes. These findings support the decision to recall the contaminated powdered and dairy formulas from the Chilean market in 2017.
- Klíčová slova
- CRISPR-cas, Cronobacter sakazakii, antibiotic resistance genes, powdered formula, virulence,
- Publikační typ
- časopisecké články MeSH
Cronobacter spp. are opportunistic pathogens of the Enterobacteriaceae family. The organism causes infections in all age groups, but the most serious cases occur in outbreaks related to neonates with meningitis and necrotizing enterocolitis. The objective was to determine the in silico and in vitro putative virulence factors of six Cronobacter sakazakii strains isolated from powdered milk (PM) in the Czech Republic. Strains were identified by MALDI-TOF MS and whole-genome sequencing (WGS). Virulence and resistance genes were detected with the Ridom SeqSphere+ software task template and the Comprehensive Antibiotic Resistance Database (CARD) platform. Adherence and invasion ability were performed using the mouse neuroblastoma (N1E-115 ATCCCRL-2263) cell line. The CRISPR-Cas system was searched with CRISPRCasFinder. Core genome MLST identified four different sequence types (ST1, ST145, ST245, and ST297) in six isolates. Strains 13755-1B and 1847 were able to adhere in 2.2 and 3.2 × 106 CFU/mL, while 0.00073% invasion frequency was detected only in strain 1847. Both strains 13755-1B and 1847 were positive for three (50.0%) and four virulence genes, respectively. The cpa gene was not detected. Twenty-eight genes were detected by WGS and grouped as flagellar or outer membrane proteins, chemotaxis, hemolysins, and invasion, plasminogen activator, colonization, transcriptional regulator, and survival in macrophages. The colistin-resistance-encoding mcr-9.1 and cephalothin-resis-encoding blaCSA genes and IncFII(pECLA) and IncFIB(pCTU3) plasmids were detected. All strains exhibited CRISPR matrices and four of them two type I-E and I-F matrices. Combined molecular methodologies improve Cronobacter spp. decision-making for health authorities to protect the population.
- Klíčová slova
- CRISPR-Cas, Cronobacter sakazakii, antibiotic resistance genes, powdered milk, virulence, whole-genome sequencing,
- Publikační typ
- časopisecké články MeSH