Nejvíce citovaný článek - PubMed ID 30604680
SIGNIFICANCE: Over more than 300 years, microscopic imaging keeps providing fundamental insights into the mechanisms of living organisms. Seeing microscopic structures beyond the reach of free-space light-based microscopy, however, requires dissection of the tissue-an intervention seriously disturbing its physiological functions. The hunt for low-invasiveness tools has led a growing community of physicists and engineers into the realm of complex media photonics. One of its activities represents exploiting multimode optical fibers (MMFs) as ultra-thin endoscopic probes. Employing wavefront shaping, these tools only recently facilitated the first peeks at cells and their sub-cellular compartments at the bottom of the mouse brain with the impact of micro-scale tissue damage. AIM: Here, we aim to highlight advances in MMF-based holographic endo-microscopy facilitating microscopic imaging throughout the whole depth of the mouse brain. APPROACH: We summarize the important technical and methodological prerequisites for stabile high-resolution imaging in vivo. RESULTS: We showcase images of the microscopic building blocks of brain tissue, including neurons, neuronal processes, vessels, intracellular calcium signaling, and red blood cell velocity in individual vessels. CONCLUSIONS: This perspective article helps to understand the complexity behind the technology of holographic endo-microscopy, summarizes its recent advances and challenges, and stimulates the mind of the reader for further exploitation of this tool in the neuroscience research.
- Klíčová slova
- complex media photonics, deep brain imaging, endoscope, in-vivo imaging, multimode fiber, wavefront shaping,
- Publikační typ
- časopisecké články MeSH
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
- Klíčová slova
- blood flow, fluorescence, label free, molecular sensors, multimodal, optical imaging, optogenetics,
- Publikační typ
- časopisecké články MeSH