Nejvíce citovaný článek - PubMed ID 30756429
microRNA expression profile in porcine oocytes with different developmental competence derived from large or small follicles
BACKGROUND: Oocytes of large animal species isolated from small ovarian follicles (< 2 mm) are less competent to support early embryonic development after in vitro maturation and fertilization than their counterparts isolated from medium-sized and preovulatory follicles. This study aimed to assess the effect of a new maturation medium containing FGF2, LIF, and IGF1 (FLI medium) on the meiotic and developmental competence of pig cumulus-oocytes complexes (COCs) derived from the small and medium-sized follicles. METHODS: The growing oocytes were isolated from 1 to 2 (small follicle; SF) and the fully-grown ones from 3 to 6 (large follicle; LF) mm follicles and matured in a control M199 medium with gonadotropins and EGF and the FLI medium enriched by the triplet of growth factors. The matured oocytes were parthenogenetically activated and cultured to the blastocyst stage. Chromatin configuration before and during the culture and MAP kinase activity were assessed in the oocytes. Finally, the expression of cumulus cell genes previously identified as markers of oocyte quality was assessed. RESULTS: The maturation and blastocyst rates of oocytes gained from LF were significantly higher than that from SF in the control medium. In contrast, similar proportions of oocytes from LF and SF completed meiosis and developed to blastocysts when cultured in FLI. Most of the oocytes freshly isolated from SF possessed germinal vesicles with fine filaments of chromatin (GV0) or chromatin surrounding the nucleolus (GVI; 30%); the oocytes from LF were mainly in GVI (or GVII) exhibiting a few small lumps of chromatin beneath the nuclear membrane. When cultured in the FLI medium for 16 h, an acceleration of the course of maturation in oocytes both from SF and LF compared to the control medium was observed and a remarkable synchrony in the course of chromatin remodeling was noticed in oocytes from SF and LF. CONCLUSIONS: This work demonstrates that the enrichment of culture medium by FGF2, LIF, and IGF1 can enhance the meiotic and developmental competence of not only fully-grown, but also growing pig oocytes and significantly thus expanding the number of oocytes available for various assisted reproductive technology applications.
- Klíčová slova
- Chromatin configuration, Developmental potential, Follicle size, Gene expression, Growth factors, MAPK activation, Oocyte maturation,
- MeSH
- chromatin metabolismus MeSH
- fibroblastový růstový faktor 2 * farmakologie metabolismus MeSH
- IVM techniky * MeSH
- meióza MeSH
- oocyty metabolismus MeSH
- ovariální folikul MeSH
- prasata MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin MeSH
- fibroblastový růstový faktor 2 * MeSH
BACKGROUND: Ovarian follicular fluids (FFs) contain several kinds of regulatory factors that maintain a suitable microenvironment for oocyte development. Extracellular vesicles (EVs) are among the factors that play essential roles in regulating follicle and oocyte development through their cargo molecules that include microRNAs (miRNAs). This study aimed to investigate small-EV (s-EV) miRNAs in porcine FFs and their potential association with oocyte quality. METHODS: Individual aspirated oocytes were stained with lissamine green B stain (LB), a vital stain for oocyte quality, and each oocyte was classified as high-quality (unstained; HQ) or low-quality (stained; LQ). FFs corresponding to oocytes were pooled together into HQ and LQ groups. Small-EVs were isolated from FFs, characterized, and their miRNA cargo was identified using the Illumina NovaSeq sequencing platform. Additionally, s-EVs from the HQ and LQ groups were utilized to investigate their effect on oocyte development after co-incubation during in vitro maturation. RESULTS: A total of 19 miRNAs (including miR-125b, miR-193a-5p, and miR-320) were significantly upregulated, while 23 (including miR-9, miR-206, and miR-6516) were downregulated in the HQ compared to the LQ group. Apoptosis, p53 signaling, and cAMP signaling were among the top pathways targeted by the elevated miRNAs in the HQ group while oocyte meiosis, gap junction, and TGF-beta signaling were among the top pathways targeted by the elevated miRNAs in the LQ group. The supplementation of small-EVs during maturation does not affect the oocyte developmental rates. However, LQ s-EVs increase the proportion of oocytes with homogeneous mitochondrial distribution and decrease the proportion of heterogeneous distribution. CONCLUSION: Our findings indicated that FF-EVs contain different miRNA cargos associated with oocyte quality and could affect the mitochondrial distribution patterns during oocyte maturation.
- Klíčová slova
- Extracellular vesicles, Follicular fluids, MiRNA, Oocyte quality, Porcine,
- Publikační typ
- časopisecké články MeSH
miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal-to-zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc-miR-205 and bovine bta-miR-10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc-miR-205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte-to-embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.
- Klíčová slova
- NanoLuc, miR-10b, miR-205, miRNA, oocyte,
- MeSH
- messenger RNA genetika metabolismus MeSH
- mikro RNA * genetika metabolismus MeSH
- oocyty metabolismus MeSH
- oogeneze genetika MeSH
- prasata MeSH
- skot MeSH
- zvířata MeSH
- zygota metabolismus MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA * MeSH
Oocyte developmental competence is regulated by various mechanisms and molecules including microRNAs (miRNAs). However, the functions of many of these miRNAs in oocyte and embryo development are still unclear. In this study, we managed to manipulate the expression level of miR-152 during oocyte maturation to figure out its potential role in determining the developmental competence of porcine oocytes. The inhibition (Inh) of miR-152 during oocyte maturation does not affect the MII and cleavage rates, however it significantly enhances the blastocyst rate compared to the overexpression (OvExp) and control groups. Pathway analysis identified several signaling pathways (including PI3K/AKT, TGFβ, Hippo, FoxO, and Wnt signaling) that are enriched in the predicted target genes of miR-152. Gene expression analysis revealed that IGF1 was significantly up-regulated in the Inh group and downregulated in the OvExp group of oocytes. Moreover, IGF1R was significantly upregulated in the Inh oocyte group compared to the control one and IGFBP6 was downregulated in the Inh oocyte group compared to the other groups. Blastocysts developed from the OvExp oocytes exhibited an increase in miR-152 expression, dysregulation in some quality-related genes, and the lowest rate of blastocyst formation. In conclusion, our results demonstrate a negative correlation between miR-152 expression level and blastocyst rate in pigs. This correlation could be through targeting IGF system components during oocyte development.
- Klíčová slova
- blastocyst rate, miR-152, oocyte, porcine,
- Publikační typ
- časopisecké články MeSH
Elevated summer temperature is reported to be the leading cause of stress in dairy and beef cows, which negatively affects various reproductive functions. Follicular cells respond to heat stress (HS) by activating the expression of heat shock family proteins (HSPs) and other antioxidants. HS is reported to negatively affect the bi-directional communication between the follicular cells and the oocyte, which is partly mediated by follicular fluid extracellular vesicles (EVs) released from surrounding cells. As carriers of bioactive molecules (DNA, RNA, protein, and lipids), the involvement of EVs in mediating the stress response in follicular cells is not fully understood. Here we used an in vitro model to decipher the cellular and EV-coupled miRNAs of bovine granulosa cells in response to HS. Moreover, the protective role of stress-related EVs against subsequent HS was assessed. For this, bovine granulosa cells from smaller follicles were cultured in vitro and after sub-confluency, cells were either kept at 37 °C or subjected to HS (42 °C). Results showed that granulosa cells exposed to HS increased the accumulation of ROS, total oxidized protein, apoptosis, and the expression of HSPs and antioxidants, while the viability of cells was reduced. Moreover, 14 and 6 miRNAs were differentially expressed in heat-stressed granulosa cells and the corresponding EVs, respectively. Supplementation of stress-related EVs in cultured granulosa cells has induced adaptive response to subsequent HS. However, this potential was not pronounced when the cells were kept under 37 °C. Taking together, EVs generated from granulosa cells exposed to HS has the potential to shuttle bioactive molecules to recipient cells and make them robust to subsequent HS.
- MeSH
- apoptóza MeSH
- extracelulární vezikuly genetika metabolismus patologie MeSH
- folikulární buňky metabolismus patologie MeSH
- nemoci skotu epidemiologie genetika prevence a kontrola MeSH
- ovariální folikul metabolismus patologie MeSH
- poruchy vyvolané tepelným stresem genetika patofyziologie veterinární MeSH
- reakce na tepelný šok * MeSH
- regulace genové exprese MeSH
- skot MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MicroRNAs (miRNAs) are ubiquitous small RNAs guiding post-transcriptional gene repression in countless biological processes. However, the miRNA pathway in mouse oocytes appears inactive and dispensable for development. We propose that marginalization of the miRNA pathway activity stems from the constraints and adaptations of RNA metabolism elicited by the diluting effects of oocyte growth. We report that miRNAs do not accumulate like mRNAs during the oocyte growth because miRNA turnover has not adapted to it. The most abundant miRNAs total tens of thousands of molecules in growing (∅ 40 μm) and fully grown (∅ 80 μm) oocytes, a number similar to that observed in much smaller fibroblasts. The lack of miRNA accumulation results in a 100-fold lower miRNA concentration in fully grown oocytes than in somatic cells. This brings a knock-down-like effect, where diluted miRNAs engage targets but are not abundant enough for significant repression. Low-miRNA concentrations were observed in rat, hamster, porcine and bovine oocytes, arguing that miRNA inactivity is not mouse-specific but a common mammalian oocyte feature. Injection of 250,000 miRNA molecules was sufficient to restore reporter repression in mouse and porcine oocytes, suggesting that miRNA inactivity comes from low-miRNA abundance and not from some suppressor of the pathway.
- MeSH
- buňky 3T3 MeSH
- druhová specificita MeSH
- křečci praví MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- messenger RNA genetika metabolismus MeSH
- mikro RNA genetika metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- oocyty cytologie metabolismus MeSH
- oogeneze * MeSH
- prasata MeSH
- skot MeSH
- teoretické modely MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- krysa rodu Rattus MeSH
- myši MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH