Nejvíce citovaný článek - PubMed ID 30804519
Mycorrhizal fungi influence global plant biogeography
Arbuscular mycorrhizal (AM) fungi are fundamental to planetary health, enhancing plant nutrient uptake, stabilizing soils, and supporting biodiversity. Due to their prevalence and ecological importance, AM fungi are critical to achieving the environmental targets within the United Nations (UN) Sustainability Development Goals (SDGs) framework, including SDG 15: Life on Land. Despite these fungi engaging in the most widespread and ancient plant-microbe symbiosis, many fundamental aspects of the biogeography of AM fungi remain poorly resolved. This limits our ability to understand and document these fungal species' contributions to preserving terrestrial life on Earth. Using the largest global dataset of AM fungal eDNA sequences, we highlight that > 70% of ecoregions have no available data generated from soil using AM fungal specific metabarcoding. Drawing attention to these severe data gaps can optimize future sampling efforts in key habitats. Filling these gaps and developing a more complete picture on the biogeographic distributions of AM fungal species will help to clarify their contributions to environmental targets.
- Klíčová slova
- Life on Land, Sustainable Development Goals, arbuscular mycorrhizal fungi, biodiversity, conservation, ecoregion,
- MeSH
- biodiverzita MeSH
- ekosystém MeSH
- fylogeografie MeSH
- mykorhiza * genetika klasifikace fyziologie MeSH
- Organizace spojených národů MeSH
- půdní mikrobiologie MeSH
- rostliny mikrobiologie MeSH
- symbióza MeSH
- trvale udržitelný rozvoj * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.
- MeSH
- mykorhiza * MeSH
- půda MeSH
- rostliny mikrobiologie MeSH
- symbióza MeSH
- zpětná vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- půda MeSH
Plant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification.
Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
Alien plants represent a potential threat to environment and society. Understanding the process of alien plants naturalization is therefore of primary importance. In alien plants, successful establishment can be constrained by the absence of suitable fungal partners. Here, we used 42 independent datasets of ectomycorrhizal fungal (EcMF) communities associated with alien Pinaceae and Eucalyptus spp., as the most commonly introduced tree species worldwide, to explore the strategies these plant groups utilize to establish symbioses with EcMF in the areas of introduction. We have also determined the differences in composition of EcMF communities associated with alien ectomycorrhizal plants in different regions. While alien Pinaceae introduced to new regions rely upon association with co-introduced EcMF, alien Eucalyptus often form novel interactions with EcMF species native to the region where the plant was introduced. The region of origin primarily determines species composition of EcMF communities associated with alien Pinaceae in new areas, which may largely affect invasion potential of the alien plants. Our study shows that alien ectomycorrhizal plants largely differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in sites of introduction, which may potentially affect their invasive potential.
- MeSH
- mykorhiza * MeSH
- rostliny MeSH
- stromy MeSH
- symbióza MeSH
- zavlečené druhy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH