Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
- Keywords
- Hulk/Deadpool, aromatic cytokinins, cis-zeatin, cytokinin biosynthesis, cytokinin oxidase/dehydrogenase, cytokinin signalling, cytokinin transport, cytokinins, isopentenyl transferase,
- MeSH
- Arabidopsis metabolism MeSH
- Models, Biological MeSH
- Biological Transport MeSH
- Biological Assay MeSH
- Cytokinins metabolism MeSH
- Plant Physiological Phenomena * MeSH
- Glycosylation MeSH
- Hydrolysis MeSH
- Kinetics MeSH
- Kinetin metabolism MeSH
- Oxidoreductases metabolism MeSH
- Plant Growth Regulators metabolism MeSH
- Plants metabolism MeSH
- Signal Transduction * MeSH
- Protein Binding MeSH
- Zeatin analogs & derivatives MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- cytokinin oxidase MeSH Browser
- Cytokinins MeSH
- dihydrozeatin MeSH Browser
- Kinetin MeSH
- Oxidoreductases MeSH
- Plant Growth Regulators MeSH
- Zeatin MeSH
Five poplar CHASE-containing histidine kinase receptors bind cytokinins and display kinase activities. Both endogenous isoprenoid and aromatic cytokinins bind to the receptors in live cell assays. Cytokinins are phytohormones that play key roles in various developmental processes in plants. The poplar species Populus × canadensis, cv. Robusta, is the first organism found to contain aromatic cytokinins. Here, we report the functional characterization of five CHASE-containing histidine kinases from P. × canadensis: PcHK2, PcHK3a, PcHK3b, PcHK4a and PcHK4b. A qPCR analysis revealed high transcript levels of all PcHKs other than PcHK4b across multiple poplar organs. The ligand specificity was determined using a live cell Escherichia coli assay and we provide evidence based on UHPLC-MS/MS data that ribosides can be true ligands. PcHK2 exhibited higher sensitivity to iP-type cytokinins than the other receptors, while PcHK3a and PcHK3b bound these cytokinins much more weakly, because they possess two isoleucine residues that clash with the cytokinin base and destabilize its binding. All receptors display kinase activity but their activation ratios in the presence/absence of cytokinin differ significantly. PcHK4a displays over 400-fold higher kinase activity in the presence of cytokinin, suggesting involvement in strong responses to changes in cytokinin levels. trans-Zeatin was both the most abundant cytokinin in poplar and that with the highest variation in abundance, which is consistent with its strong binding to all five HKs and activation of cytokinin signaling via A-type response regulators. The aromatic cytokinins' biological significance remains unclear, their levels vary diurnally, seasonally, and annually. PcHK3 and PcHK4 display the strongest binding at pH 7.5 and 5.5, respectively, in line with their putative membrane localization in the endoplasmic reticulum and plasma membrane.
- Keywords
- Aromatic cytokinin, Histidine kinase, Hormone, Isoprenoid cytokinin, Poplar, Topolin,
- MeSH
- Cytokinins metabolism MeSH
- Histidine Kinase metabolism MeSH
- Populus metabolism MeSH
- Tandem Mass Spectrometry MeSH
- Terpenes metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytokinins MeSH
- Histidine Kinase MeSH
- Terpenes MeSH