Most cited article - PubMed ID 31108147
Direct comparison of chitinolytic properties and determination of combinatory effects of mouse chitotriosidase and acidic mammalian chitinase
Chitooligosaccharides exhibit several biomedical activities, such as inflammation and tumorigenesis reduction in mammals. The mechanism of the chitooligosaccharides' formation in vivo has been, however, poorly understood. Here we report that mouse acidic chitinase (Chia), which is widely expressed in mouse tissues, can produce chitooligosaccharides from deacetylated chitin (chitosan) at pH levels corresponding to stomach and lung tissues. Chia degraded chitin to produce N-acetyl-d-glucosamine (GlcNAc) dimers. The block-type chitosan (heterogenous deacetylation) is soluble at pH 2.0 (optimal condition for mouse Chia) and was degraded into chitooligosaccharides with various sizes ranging from di- to nonamers. The random-type chitosan (homogenous deacetylation) is soluble in water that enables us to examine its degradation at pH 2.0, 5.0, and 7.0. Incubation of these substrates with Chia resulted in the more efficient production of chitooligosaccharides with more variable sizes was from random-type chitosan than from the block-type form of the molecule. The data presented here indicate that Chia digests chitosan acquired by homogenous deacetylation of chitin in vitro and in vivo. The degradation products may then influence different physiological or pathological processes. Our results also suggest that bioactive chitooligosaccharides can be obtained conveniently using homogenously deacetylated chitosan and Chia for various biomedical applications.
- Keywords
- FACE method, acidic chitinase, block-type chitosan, chitin, chitooligosaccharides, random-type chitosan,
- MeSH
- Chitinases chemistry metabolism MeSH
- Chitosan chemistry metabolism MeSH
- X-Ray Diffraction MeSH
- Hydrolysis MeSH
- Hydrogen-Ion Concentration * MeSH
- Mice MeSH
- Oligosaccharides chemistry metabolism MeSH
- Organ Specificity MeSH
- Lung metabolism MeSH
- Substrate Specificity MeSH
- Stomach metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chitinases MeSH
- Chitosan MeSH
- oligochitosan MeSH Browser
- Oligosaccharides MeSH
Fluorophore-assisted carbohydrate electrophoresis (FACE) enables detection and quantification of degradation products from artificial and natural chitin substrates such as 4-NP-(GlcNAc)2, (GlcNAc)4 and colloidal chitin. The FACE method has been improved by our group for analysis of chitooligosaccharides in the presence of several buffer systems commonly used in the biochemical evaluation of chitinolytic activities of enzymes at pH 2.0-8.0. FACE is a very sensitive technique detecting picomolar amounts of molecules. We optimized the detection conditions as follows: exposure type, precision; sensitivity, high resolution; exposure time, 5 s. We evaluated the (GlcNAc)2 levels using a standard curve that allows chitooligosaccharides quantification at up to 10 nmol amounts. Using the method presented here, the chitinolytic properties of different chitinases can be compared directly. Serratia chitinase A (ChiA) and chitinase B (ChiB), two well-studied bacterial chitinases, have been shown by HPLC to have a synergistic effect on the chitin degradation rate. Using the FACE method, we determined the combinatory effects of mouse chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) in natural chitin substrates processing.•FACE is a simple and quantitative method.•Our improved procedure enables the quantification of chitooligosaccharides produced by chitinases at pH 2.0-8.0.•FACE is able to quantify chitooligosaccharides at up to 10 nmol amounts.
- Keywords
- Chitin degradation, Chitinase, Chitooligosaccharides, Fluorophore-assisted carbohydrate electrophoresis, Quantitative analysis,
- Publication type
- Journal Article MeSH