Nejvíce citovaný článek - PubMed ID 31148029
Selected Simple Methods of Plant Cell Wall Histochemistry and Staining for Light Microscopy
The plant kingdom exhibits a diversity of nutritional strategies, extending beyond complete autotrophy. In addition to full mycoheterotrophs and holoparasites, it is now recognized that a greater number of green plants than previously assumed use partly of fungal carbon. These are termed partial mycoheterotrophs or mixotrophs. Notably, some species exhibit a dependency on fungi exclusively during early ontogenetic stages, referred to as initial mycoheterotrophy. Japonolirion osense, a rare plant thriving in serpentinite soils, emerges as a potential candidate for initial mycoheterotrophy or mixotrophy. Several factors support this hypothesis, including its diminutive sizes of shoot and and seeds, the establishment of Paris-type arbuscular mycorrhizal associations, its placement within the Petrosaviales-largely composed of fully mycoheterotrophic species-and its ability to face the challenging conditions of its environment. To explore these possibilities, our study adopts a multidisciplinary approach, encompassing stable isotope abundance analyses, in vitro experiments, anatomical analyses, and comparative plastome analyses. Our study aims to (1) determine whether J. osense relies on fungal carbon during germination, indicating initial mycoheterotrophy, (2) determine if it employs a dual carbon acquisition strategy as an adult, and (3) investigate potential genomic reductions in photosynthetic capabilities. Contrary to expectations, our comprehensive findings strongly indicate that J. osense maintains complete autotrophy throughout its life cycle. This underscores the contrasting nutritional strategies evolved by species within the Petrosaviales.
- Klíčová slova
- Japonolirion osense, In vitro, Mixotrophy, Petrosaviales, Plastome, Stable isotopes,
- MeSH
- autotrofní procesy * MeSH
- heterotrofní procesy * MeSH
- mykorhiza fyziologie MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- uhlík MeSH
In angiosperms, the mature seed consists of embryo, endosperm, and a maternal plant-derived seed coat (SC). The SC plays a role in seed filling, protects the embryo, mediates dormancy and germination, and facilitates the dispersal of seeds. SC properties have been modified during the domestication process, resulting in the removal of dormancy, mediated by SC impermeability. This study compares the SC anatomy and histochemistry of two wild (JI64 and JI1794) and two domesticated (cv. Cameor and JI92) pea genotypes. Histochemical staining of five developmental stages: 13, 21, 27, 30 days after anthesis (DAA), and mature dry seeds revealed clear differences between both pea types. SC thickness is established early in the development (13 DAA) and is primarily governed by macrosclereid cells. Polyanionic staining by Ruthenium Red indicated non homogeneity of the SC, with a strong signal in the hilum, the micropyle, and the upper parts of the macrosclereids. High peroxidase activity was detected in both wild and cultivated genotypes and increased over the development peaking prior to desiccation. The detailed knowledge of SC anatomy is important for any molecular or biochemical studies, including gene expression and proteomic analysis, especially when comparing different genotypes and treatments. Analysis is useful for other crop-to-wild-progenitor comparisons of economically important legume crops.
- Klíčová slova
- domestication, dormancy, legumes, macrosclereids, pea, permeability, seed coat, testa,
- MeSH
- domestikace MeSH
- endosperm MeSH
- genotyp MeSH
- hrách setý genetika metabolismus MeSH
- klíčení MeSH
- Magnoliopsida genetika metabolismus MeSH
- proteomika MeSH
- semena rostlinná genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH