Nejvíce citovaný článek - PubMed ID 31148039
Transient Gene Expression as a Tool to Monitor and Manipulate the Levels of Acidic Phospholipids in Plant Cells
Here, we present a protocol for labeling and live visualization of RNA-protein complexes in the form of ribonucleoprotein particles (RNPs) in tobacco pollen tubes. We describe steps for constructing RNA-pp7/MS2 tag and biolistic gene-gun-mediated pollen transformation. We then provide detailed procedures for RNA labeling using PP7 aptamer nascent RNA tagging and a fluorescently labeled Pseudomonas aeruginosa PP7 bacteriophage coat protein (PCP) reporter that binds to PP7 RNA stem loops. This protocol is adaptable to other cell types by employing tissue-specific promoters.
- Klíčová slova
- cell biology, developmental biology, microscopy, plant sciences,
- MeSH
- barvení a značení metody MeSH
- Pseudomonas aeruginosa genetika metabolismus MeSH
- pylová láčka * metabolismus genetika MeSH
- ribonukleoproteiny metabolismus MeSH
- RNA rostlin genetika metabolismus MeSH
- tabák * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribonukleoproteiny MeSH
- RNA rostlin MeSH
Once regarded as mere membrane building blocks, lipids are now recognized as diverse and intricate players that mold the functions, identities, and responses of cellular membranes. Although the interactions of lipids with integral and peripheral membrane proteins are crucial for their localization, activity, and function, how proteins bind lipids is still far from being thoroughly explored. Describing and characterizing these dynamic protein-lipid interactions is thus essential to understanding the membrane-associated processes. Here we review the current range of experimental techniques employed to study plant protein-lipid interactions, integrating various methods. We summarize the principles, advantages, and limitations of classical in vitro biochemical approaches, including protein-lipid overlays and various liposome binding assays, and complement them with in vivo microscopic techniques centered around the use of genetically encoded lipid sensors and pharmacological or genetic membrane lipid manipulation tools. We also highlight several emerging techniques still awaiting their advancement into plant membrane research and emphasize the need to use complementary experimental strategies as key for elucidating the mechanistic roles of protein-lipid interactions in plant cell biology.
- Klíčová slova
- Genetically encoded biosensors, lipid manipulation, membrane lipid imaging, microscopy, peripheral membrane proteins, protein–lipid interactions,
- MeSH
- buněčná membrána * metabolismus MeSH
- membránové lipidy metabolismus MeSH
- membránové proteiny metabolismus MeSH
- rostlinné proteiny * metabolismus MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- membránové lipidy MeSH
- membránové proteiny MeSH
- rostlinné proteiny * MeSH
Clathrin-mediated endocytosis is an essential cellular internalization pathway involving the dynamic assembly of clathrin and accessory proteins to form membrane-bound vesicles. The evolutionarily ancient TSET-TPLATE complex (TPC) plays an essential, but ill-defined role in endocytosis in plants. Here we show that two highly disordered TPC subunits, AtEH1 and AtEH2, function as scaffolds to drive biomolecular condensation of the complex. These condensates specifically nucleate on the plasma membrane through interactions with anionic phospholipids, and facilitate the dynamic recruitment and assembly of clathrin, as well as early- and late-stage endocytic accessory proteins. Importantly, condensation promotes ordered clathrin assemblies. TPC-driven biomolecular condensation thereby facilitates dynamic protein assemblies throughout clathrin-mediated endocytosis. Furthermore, we show that a disordered region of AtEH1 controls the material properties of endocytic condensates in vivo. Alteration of these material properties disturbs the recruitment of accessory proteins, influences endocytosis dynamics and impairs plant responsiveness. Our findings reveal how collective interactions shape endocytosis.
- MeSH
- buněčná membrána metabolismus MeSH
- endocytóza * MeSH
- klathrin * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- klathrin * MeSH