Most cited article - PubMed ID 31234362
Radial Basis Function Neural Network-Based Modeling of the Dynamic Thermo-Mechanical Response and Damping Behavior of Thermoplastic Elastomer Systems
In this study, a new generalized regression neural network model for predicting the curing characteristics of rubber blends with different contents of carbon black filler cured at various temperatures is proposed for the first time The carbon black contents in the rubber blend and cure temperature were used as input parameters, while the minimum and maximum elastic torque, scorch time, and optimal cure time, obtained from the analysis of 11 rheological cure curves registered at 10 various temperatures, were considered as output parameters of the model. A special pre-processing procedure of the experimental input and target data and the training algorithm is described. Less than 55% of the experimental data were used to significantly reduce the total number of input and target data points needed for training the model. Satisfactory agreement between the predicted and experimental data, with a maximum error in the prediction not exceeding 5%, was found. It is concluded that the generalized regression neural network is a powerful tool for intelligently modelling the curing process of rubber blends even in the case of a small dataset, and it can find a wide range of practical applications in the rubber industry.
- Keywords
- curing process, generalized regression neural network, modelling, rubber blends,
- Publication type
- Journal Article MeSH
Modelling the influence of high-energy ionising radiation on the properties of materials with polymeric matrix using advanced artificial intelligence tools plays an important role in the research and development of new materials for various industrial applications. It also applies to effective modification of existing materials based on polymer matrices to achieve the desired properties. In the presented work, the effects of high-energy electron beam radiation with various doses on the dynamic mechanical properties of melamine resin, phenol-formaldehyde resin, and nitrile rubber blend have been studied over a wide temperature range. A new stiffness-temperature model based on Weibull statistics of the secondary bonds breaking during the relaxation transitions has been developed to quantitatively describe changes in the storage modulus with temperature and applied radiation dose until the onset of the temperature of the additional, thermally-induced polymerisation reactions. A global search real-coded genetic algorithm has been successfully applied to optimise the parameters of the developed model by minimising the sum-squared error. An excellent agreement between the modelled and experimental data has been found.
- Keywords
- Weibull distribution, dynamic mechanical analysis, electron-beam irradiation, genetic algorithm, resin-rubber blends,
- Publication type
- Journal Article MeSH