Nejvíce citovaný článek - PubMed ID 31240908
Controlled Oil/Water Partitioning of Hydrophobic Substrates Extending the Bioanalytical Applications of Droplet-Based Microfluidics
Enzymes play a crucial role in sustainable industrial applications, with their optimization posing a formidable challenge due to the intricate interplay among residues. Computational methodologies predominantly rely on evolutionary insights of homologous sequences. However, deciphering the evolutionary variability and complex dependencies among residues presents substantial hurdles. Here, we present a new machine-learning method based on variational autoencoders and evolutionary sampling strategy to address those limitations. We customized our method to generate novel sequences of model enzymes, haloalkane dehalogenases. Three design-build-test cycles improved the solubility of variants from 11% to 75%. Thorough experimental validation including the microfluidic device MicroPEX resulted in 20 multiple-point variants. Nine of them, sharing as little as 67% sequence similarity with the template, showed a melting temperature increase of up to 9 °C and an average improvement of 3 °C. The most stable variant demonstrated a 3.5-fold increase in activity compared to the template. High-quality experimental data collected with 20 variants represent a valuable data set for the critical validation of novel protein design approaches. Python scripts, jupyter notebooks, and data sets are available on GitHub (https://github.com/loschmidt/vae-dehalogenases), and interactive calculations will be possible via https://loschmidt.chemi.muni.cz/fireprotasr/.
- Publikační typ
- časopisecké články MeSH
Thermostability is an essential requirement for the use of enzymes in the bioindustry. Here, we compare different protein stabilization strategies using a challenging target, a stable haloalkane dehalogenase DhaA115. We observe better performance of automated stabilization platforms FireProt and PROSS in designing multiple-point mutations over the introduction of disulfide bonds and strengthening the intra- and the inter-domain contacts by in silico saturation mutagenesis. We reveal that the performance of automated stabilization platforms was still compromised due to the introduction of some destabilizing mutations. Notably, we show that their prediction accuracy can be improved by applying manual curation or machine learning for the removal of potentially destabilizing mutations, yielding highly stable haloalkane dehalogenases with enhanced catalytic properties. A comparison of crystallographic structures revealed that current stabilization rounds were not accompanied by large backbone re-arrangements previously observed during the engineering stability of DhaA115. Stabilization was achieved by improving local contacts including protein-water interactions. Our study provides guidance for further improvement of automated structure-based computational tools for protein stabilization.
- Publikační typ
- časopisecké články MeSH
Protein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. Here we track the role of dynamics in evolution, starting from the evolvable and thermostable ancestral protein AncHLD-RLuc which catalyses both dehalogenase and luciferase reactions. Insertion-deletion (InDel) backbone mutagenesis of AncHLD-RLuc challenged the scaffold dynamics. Screening for both activities reveals InDel mutations localized in three distinct regions that lead to altered protein dynamics (based on crystallographic B-factors, hydrogen exchange, and molecular dynamics simulations). An anisotropic network model highlights the importance of the conformational flexibility of a loop-helix fragment of Renilla luciferases for ligand binding. Transplantation of this dynamic fragment leads to lower product inhibition and highly stable glow-type bioluminescence. The success of our approach suggests that a strategy comprising (i) constructing a stable and evolvable template, (ii) mapping functional regions by backbone mutagenesis, and (iii) transplantation of dynamic features, can lead to functionally innovative proteins.
- MeSH
- buňky NIH 3T3 MeSH
- katalýza MeSH
- kinetika MeSH
- konformace proteinů MeSH
- luciferasy renil chemie genetika metabolismus MeSH
- luciferasy chemie genetika metabolismus MeSH
- mutace MeSH
- mutageneze MeSH
- myši MeSH
- proteinové inženýrství * MeSH
- savci MeSH
- simulace molekulární dynamiky * MeSH
- stabilita enzymů MeSH
- teplota MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- luciferasy renil MeSH
- luciferasy MeSH