Nejvíce citovaný článek - PubMed ID 31265944
Sperm motility in fishes: (III) diversity of regulatory signals from membrane to the axoneme
Short-term storage and management of sperm in vitro is an easy and economical process in which suitable extenders can be utilized to extend the storage period and prevent sperm function impairment. Therefore, the current study aimed to evaluate the effect of suitable extenders during the short-term storage of sterlet sperm and determine their fertilizing capacity and hatching success. Three extenders containing a composition of 16, 20, and 24 mM NaCl, 1 mM KCl, 0.1 mM CaCl2, 10 mM Tris, pH 8.0 with osmolarity of 46, 55, and 62 mOsm/kg, were used to dilute the sperm of four sexually mature sterlet males (n = 4). Using a CASA system, the motility and velocity of undiluted and diluted sperm with extenders (E1 - E3) were assessed over 6 days at 0-2 °C. The short-term stored diluted sperm was then used in the fertilization and hatching assay, and undiluted fresh and stored sperm was used as a control. A two-way factorial analysis of variance (ANOVA) model confirmed significant effects on sperm motility, curvilinear velocity (VCL), and straight-line velocity (VSL) (P < 0.001), as well as their interaction with the extender. The model was decomposed into a one-way ANOVA to examine the impacts of extenders and storage time. With increasing storage periods, the sperm motility and velocity gradually decreased for diluted sperm with three extenders (E1-E3) but sharply decreased for undiluted sperm (Control). The motility of undiluted sperm was found 3.77 ± 4.09% at 4 days, whereas sperm diluted with extenders showed 57.57 ± 12.33% (E1), 64.34 ± 11.86% (E2), and 61.40 ± 12.41% (E3) motility at 6 days. This study explored extenders optimized with higher osmolarity (39-62 mOsm/kg) and lower K+ (1 mmol/L) as the most suitable medium for storing sterlet sperm for 6 days. After 6 days post storage, sperm diluted with extenders E1-E3 achieved a fertilization rate of 31.29 ± 14.2%, 31.66 ± 8.84%, and 30.67 ± 10.02%, respectively, and hatching success of 29.58 ± 13.4%, 30.50 ± 7.89%, and 27.95 ± 9.62%, respectively with freshly ovulated eggs.
- Klíčová slova
- CASA, Fertilization rate, Hatching rate, Sperm motility, Sperm short-term storage, Sperm velocity,
- MeSH
- fertilizace * účinky léků MeSH
- motilita spermií * účinky léků MeSH
- ryby * fyziologie MeSH
- spermie * fyziologie účinky léků MeSH
- uchování spermatu * veterinární metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The present study was designed to evaluate sperm phenotypic variables during in vivo and in vitro storage following multiple sperm stripping in common carp (Cyprinus carpio L.). Each male was injected 3 times with carp pituitary 3 days apart. Sperm was stored in vivo in the body cavity for 0.5 days (Fresh sperm) and 3 days (Old sperm) after hormonal stimulation. Then sperm was collected and diluted with a carp extender at a ratio of 1:1, and stored in vitro on ice for 0, 3, and 6 days. The phenotypic parameters, including the number of total motile spermatozoa, number of fast motile spermatozoa, number of motile spermatozoa, percentage of fast motile spermatozoa, and percentage of spermatozoa motility were the major components of principal component analysis (PCA). In general, Fresh sperm from the first stripping showed slightly better quality than Old sperm from the second and third stripping, especially in the phenotypic parameters of a number of total spermatozoa and a number of total motile spermatozoa (P < 0.05). The highest kinetic and quantitative spermatozoa variables were obtained in Fresh and Old sperm just after sperm collection (0-day storage in vitro), and then they were decreased during the period of in vitro storage up to 6 days (P < 0.05). However, the fertilization, hatching, and malformation rates from Fresh sperm were similar compared with the Old sperm. Sperm could be stripped 0.5 days post hormonal treatment and stored in vitro up to 6 days with good fertilization performance (fertility, hatching, and malformation rates were 92.5%, 91.5%, and 1.3%, respectively). Therefore, our results suggested that multiple hormonal treatments with multiple stripping could be used in artificial reproduction in common carp.
- Klíčová slova
- Common carp, In vitro, In vivo, Sperm storage, Spermatozoa aging,
- MeSH
- kapři * MeSH
- kryoprezervace metody MeSH
- led MeSH
- motilita spermií fyziologie MeSH
- sperma fyziologie MeSH
- spermie fyziologie MeSH
- stárnutí MeSH
- uchování spermatu * metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- led MeSH
Pikeperch (Sander lucioperca) is a highly profitable commercial species whose economic value has greatly increased in the last decade. As in other species, the quality of spermatozoa in this species is a principal feature inherent in fertilization success and efficient natural and artificial reproduction. The capacity of fish spermatozoa to be activated and tolerate environmental changes (in osmolality, ion composition, external pH, temperature, etc.) during the motility period contributes to fertilization success. In this study, we investigated the effects of environmental osmolality and ion composition on spermatozoa motility. To determine if the activation mechanism is affected by sperm quality parameters, we measured semen characteristics such as semen volume, spermatozoa concentration, seminal fluid osmolality and ion composition, and spermatozoa lipid composition. An additional parameter of sperm quality reflecting spermatozoa osmoresistance, the swelling rate, was measured by the nephelometry method. We detected that sperm samples with the highest content of palmitic (C16:0) and palmitoleic (C16:1) acids showed the lowest motility activation under the studied conditions, suggesting that these fatty acids are possible markers for the determination of spermatozoa quality in fish. Our results show that pikeperch spermatozoa can be activated under different osmotic conditions and that cell swelling always accompanies motility. However, spermatozoa sustain their volume under hypotonic conditions when motility is not initiated, suggesting that pikeperch spermatozoa activation is mainly controlled by ion composition rather than the osmolarity of the surrounding medium.
- Klíčová slova
- Fish spermatology, Pikeperch, Semen quality, Spermatozoa motility, Spermatozoa volume,
- MeSH
- analýza spermatu veterinární MeSH
- motilita spermií fyziologie MeSH
- okounovití * fyziologie MeSH
- sperma * fyziologie MeSH
- spermie fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Increasing global rates of diminished fertility in males has been suggested to be associated with exposure to environmental contaminants (ECs). The aquatic environments are the final repository of ECs. As the reproductive system is conserved in vertebrates, studies on the effects of ECs on fertility endpoints in fishes provide us with valuable information to establish biomarkers in risk assessment of ECs, and to understand the ECs-related fertility threat. The aim of the present review was to evaluate associations between ECs and fertility determinants to better understand ECs-related male fertility threat in male fishes. Wildlife studies show that the reproductive system has been affected in fishes sampled from the polluted aquatic environment. The laboratory studies show the potency of ECs including natural and synthetic hormones, alkylphenols, bisphenols, plasticizers, pesticides, pharmaceutical, alkylating, and organotin agents to affect fertility determinants, resulting in diminished fertility at environmentally relevant concentrations. Both wildlife and laboratory studies reveal that ECs adverse effects on male fertility are associated with a decrease in sperm production, damage to sperm morphology, alternations in sperm genome, and decrease in sperm motility kinetics. The efficiency of ECs to affect sperm quality and male fertility highly depends on the concentration of the contaminants and the duration of exposure. Our review highlights that the number of contaminants examined over fertility tests are much lower than the number of contaminants detected in our environment. The ECs effects on fertility are largely unknown when fishes are exposed to the contaminants at early developmental stages. The review suggests the urgent need to examine ECs effects on male fertility when a fish is exposed at different developmental stages in a single or combination protocol. The ECs effects on the sperm genome are largely unknown to understand ECs-related inheritance of reproductive disorders transmitted to the progeny. To elucidate modes of action of ECs on sperm motility, it is needed to study functional morphology of the motility apparatus and to investigate ECs-disrupted motility signaling.
- Klíčová slova
- fertility endpoints, industrial pollutants, pesticides, pharmaceuticals, sperm quality,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The fertilization of freshwater fish occurs in an environment that may negatively affect the gametes; therefore, the specific mechanisms triggering the encounters of gametes would be highly expedient. The egg and ovarian fluid are likely the major sources of these triggers, which we confirmed here for rainbow trout (Oncorhynchus mykiss). The ovarian fluid affected significantly spermatozoa performance: it supported high velocity for a longer period and changed the motility pattern from tumbling in water to straightforward moving in the ovarian fluid. Rainbow trout ovarian fluid induced a trapping chemotaxis-like effect on activated male gametes, and this effect depended on the properties of the activating medium. The interaction of the spermatozoa with the attracting agents was accompanied by the "turn-and-run" behavior involving asymmetric flagellar beating and Ca2+ concentration bursts in the bent flagellum segment, which are characteristic of the chemotactic response. Ovarian fluid created the optimal environment for rainbow trout spermatozoa performance, and the individual peculiarities of the egg (ovarian fluid)-sperm interaction reflect the specific features of the spawning process in this species.
- Klíčová slova
- Oncorhynchus mykiss, chemotaxis, fertilization, ovarian fluid, sperm motility,
- MeSH
- chemotaxe fyziologie MeSH
- fertilizace fyziologie MeSH
- Oncorhynchus mykiss metabolismus MeSH
- ovarium cytologie metabolismus MeSH
- spermie cytologie metabolismus MeSH
- vápníková signalizace fyziologie MeSH
- zvířata MeSH
- zygota cytologie metabolismus MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In most fish exhibiting external fertilization, spermatozoa become motile after release into water, triggered by differences between intracellular and extracellular conditions such as osmotic pressure, ion composition, and pH. The rapid change in osmolarity initiating spermatozoon motility induces osmotic pressure, resulting in active water movement across the cell membrane. Mechanisms of ion and water transport across the plasma membrane and cell volume regulation are important in maintaining structure and functional integrity of the cell. The capacity of the fish spermatozoon plasma membrane to adapt to dramatic environmental changes is an essential prerequisite for motility and successful fertilization. Adaptation to change in external osmolality may be the basis of spermatozoon function and an indicator of sperm quality. The involvement of specific water channels (aquaporins) in cell volume regulation and motility is highly likely. The goal of this review is to describe basic mechanisms of water transport and their role in fish spermatozoon physiology, focusing on osmoresistance, cell volume regulation, motility, and survival.
- Klíčová slova
- Aquaporins, Motility, Osmoresistance,·Water transport,
- MeSH
- akvaporiny fyziologie MeSH
- kryoprezervace MeSH
- lidé MeSH
- lipidy fyziologie MeSH
- osmoregulace * MeSH
- ryby fyziologie MeSH
- spermie fyziologie MeSH
- uchování spermatu MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- akvaporiny MeSH
- lipidy MeSH
Fertilization of freshwater fish occurs in the environment which negatively affects a lifespan of gametes mostly due to the osmotic shock; therefore, male gametes should reach the female gamete, as soon as possible. The existence of mechanisms controlling the encounter of gametes would be highly expedient in this case. By analogy with other species for which guidance was demonstrated, it is likely that this control may be performed by ovarian fluid or substances released by eggs. The aim was to study the effect of ovarian fluid and egg-released substances on spermatozoa behavior in sterlet. It was found that the presence of a particular concentration of ovarian fluid (30% solution in water) had an inhibiting effect on spermatozoa motility initiation. Lower concentrations of the ovarian fluid improved the longevity of spermatozoa and did not affect their trajectories. Test of chemotactic response (using a microcapillary injection of fluids into the suspension of motile spermatozoa) showed no effect of ovarian fluid on spermatozoa behavior, while at the same time, the attracting effect of the egg-conditioned medium was evident (i.e., due to some substances released from the eggs during their contact with freshwater). The results of the fertilization test showed that the presence of ovarian fluid prevented the eggs from losing the fertilizing ability due to the contact with water, as well as promoted the spermatozoa to fertilize the eggs during a longer period of time. Thus, the combined physicochemical action of "female factors" affects sterlet gametes during fertilization and may be involved in the guidance and selection mechanisms.
- Klíčová slova
- Acipenser ruthenus, Chemotaxis, Egg water, Fertilization, Ovarian fluid, Sperm motility,
- MeSH
- interakce spermie a vajíčka * MeSH
- motilita spermií MeSH
- ovarium MeSH
- ryby fyziologie MeSH
- tělesné tekutiny fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The purpose of the current study was to analyze phenotypic and functional characteristics of common carp (Cyprinus carpio) spermatozoa during in vitro aging and to investigate whether global DNA methylation is affected by sperm aging. Milt was collected from five individual males, stored in vitro on ice in a refrigerator for up to 96 h post stripping (HPS) and used to fertilize eggs with intervals of 1, 24 and 96 h. Computer-assisted sperm analysis and a S3e Cell Sorter was employed to determine the spermatozoa phenotypic characteristics (motility, velocity, concentration and viability). In addition, pH and osmolality of the seminal fluid and the capacity of the spermatozoa to fertilize, hatching rate and health of the resulting embryos were examined at different aging times. Whole-genome bisulfite sequencing was used to compare the global and gene-specific DNA methylation in fresh and aged spermatozoa. The results demonstrated that spermatozoa aging in common carp significantly affects their performance and thus the success of artificial fertilization. The methylation level at the cytosine-phosphate-guanine (CpG) sites increased significantly with 24 HPS spermatozoa compared to the fresh group at 1 HPS and then decreased significantly at 96 HPS. A more detailed investigation of gene specific differences in the DNA methylation was hindered by incomplete annotation of the C. carpio genome in the public databases.
- Klíčová slova
- DNA methylation, common carp, epigenetics, fertilization, fish, milt, sperm aging, sperm quality, sperm storage,
- MeSH
- kapři genetika růst a vývoj MeSH
- metylace DNA genetika MeSH
- spermie metabolismus patologie MeSH
- stárnutí genetika patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The aim of the present study was to investigate the spontaneous motility of spermatozoa and to optimize sperm collection, short-term sperm storage, and fertilization in zebrafish Danio rerio. The movement of spermatozoon in water was propagated along the flagellum at 16 s after sperm activation then damped from the end of the flagellum for 35 s and fully disappeared at 61 s after activation. For artificial fertilization, milt must be added to an immobilizing solution, which stops the movement of sperm and keeps the sperm motionless until fertilization. E400 and Kurokura as isotonic solutions were shown to be suitable extenders to store sperm for fertilization for 6 h. E400 stored sperm for 12 h at 0-2 °C. Sperm motility decreased only to 36% at 12 h post stripping for the E400 extender and to 19% for the Kurokura extender. To achieve an optimal level of fertilization and swim-up larvae rates, a test tube with a well-defined amount of 6,000,000 spermatozoa in E400 extender per 100 eggs and 100 µL of activation solution has proven to be more successful than using a Petri dish. The highest fertilization and swim-up larvae rates reached 80% and 40-60%, respectively, with milt stored for 1.5 h in the E400 extender at 0-2 °C.
- Klíčová slova
- Danio rerio, extender, fertilization, short-term storage, sperm motility, zebrafish,
- Publikační typ
- časopisecké články MeSH
Studying biology of sperm provides valuable information to optimize artificial reproduction and is crucial for sustainable aquaculture. Here, we investigated morphology of spermatozoon in Atlantic cod (Gadus morhua) using transmission and scanning electron microscopy. Furthermore, spermatozoa motility kinetics at different osmolalities were studied using computer-assisted sperm analysis software. The spermatozoon lacked an acrosome and consisted of a head, midpiece, and flagellum. The head of spermatozoa was round, oval, and rather elongated in shape, showing high variations in dimensions. There were up to 6 mitochondria that encircled the proximal part of the flagellum. The proximal and distal centrioles were located within the nuclear notch and arranged orthogonal to each other. The axoneme had a typical 9 + 2 microtubule structure. The flagellar length of spermatozoon was 66.94 ± 0.46 μm. Spermatozoa were immotile in the seminal plasma. Dilution of sperm with natural seawater (1100 mOsmol/kg) resulted in initiation of motility for 91.0 ± 3.4% of spermatozoa with average velocity of 86.2 ± 2.3 μm/s and beating frequency of 52 Hz. The duration of spermatozoa motility was > 6 min; however, the percentage of motile spermatozoa decreased at 60 s post-activation. When osmolality of natural seawater was modified using distilled water or NaCl, spermatozoa motility was not initiated at ≤ 400 and ≥ 2500 mOsmol/kg, and the highest percentage of motility was observed at 730-1580 mOsmol/kg. In a sucrose solution, spermatozoa motility was initiated and suppressed at 600 and 1500 mOsmol/kg, respectively, and highest percentage of motility was observed at 800-1100 mOsmol/kg. Spermatozoon morphology comparisons within Gadiformes showed differences in dimensions of head and mitochondria, flagellar length, and number of mitochondria. The present study provides valuable data that can be used for phylogenetic implications based on spermatozoon morphology and for development of artificial fertilization and sperm cryopreservation protocols based on sperm motility.
- Klíčová slova
- Beat frequency, Electron microscopy, Ions, Osmolality, Sperm ultrastructure, Sperm velocity,
- MeSH
- Gadus morhua fyziologie MeSH
- motilita spermií fyziologie MeSH
- osmolární koncentrace MeSH
- spermie fyziologie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH