Nejvíce citovaný článek - PubMed ID 31362457
Novel Benzothiazole-based Ureas as 17β-HSD10 Inhibitors, A Potential Alzheimer's Disease Treatment
BACKGROUND: The mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 (HSD10) is implicated in neurodegenerative disorders, particularly Alzheimer’s disease (AD), through its interplay with the amyloid-β peptide (Aβ). However, its independent pathological role in AD remains unclear. METHODS: To explore the individual effects of HSD10 and amyloid precursor protein (APP) overexpression (including the Aβ42-generating APPSwe/Ind variant), monoclonal HEK293 cell lines were developed. Cellular fitness was evaluated by measuring ATP levels, cell viability, and cytotoxicity measurements under glucose and galactose culture conditions. Mitochondrial metabolic changes were analysed using mitochondrial electron flow measurements in response to various metabolic substrates. HSD10 enzymatic activity was monitored using a fluorogenic probe, and two HSD10 inhibitors were tested for their ability to reduce cytotoxic effects. Statistical significance was determined using appropriate tests as detailed in the methods section. RESULTS: The overexpression of HSD10 or APPSwe/Ind led to mitochondrial dysfunction and reduced viability, particularly under glucose-deprived conditions. HSD10-driven cytotoxicity was linked to its enzymatic activity and associated with impaired TCA cycle function, reduced β-oxidation, and increased oxidative stress. In contrast, APPSwe/Ind overexpression induced Aβ42 production, glucose hypermetabolism, and enhanced β-oxidation. Aβ42 also affected HSD10 activity and further amplified its cytotoxic effects. The benzothiazole-based HSD10 inhibitor 34 restored cell viability under both HSD10 overexpression and Aβ42-rich conditions. CONCLUSIONS: HSD10 and Aβ42 each contribute to mitochondrial impairment via distinct metabolic pathways. These findings established HSD10 as an independent pathological factor in AD and support the potential of HSD10 inhibitors, particularly inhibitor 34, as therapeutic agents targeting mitochondrial dysfunction in AD. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-025-01821-8.
- Klíčová slova
- 17β-hydroxysteroid dehydrogenase type 10, Alzheimer’s disease, Amyloid precursor protein, Amyloid-β peptide, Mitochondria,
- Publikační typ
- časopisecké články MeSH
17β-HSD10 is a mitochondrial enzyme that catalyzes the steroidal oxidation of a hydroxy group to a keto group and, thus, is involved in maintaining steroid homeostasis. The druggability of 17β-HSD10 is related to potential treatment for neurodegenerative diseases, for example, Alzheimer's disease or cancer. Herein, steroidal derivatives with an acidic hemiester substituent at position C-3 on the skeleton were designed, synthesized, and evaluated by using pure recombinant 17β-HSD10 converting 17β-estradiol to estrone. Compounds 22 (IC50 = 6.95 ± 0.35 μM) and 23 (IC50 = 5.59 ± 0.25 μM) were identified as the most potent inhibitors from the series. Compound 23 inhibited 17β-HSD10 activity regardless of the substrate. It was found not cytotoxic toward the HEK-293 cell line and able to inhibit 17β-HSD10 activity also in the cellular environment. Together, these findings support steroidal compounds as promising candidates for further development as 17β-HSD10 inhibitors.
- Publikační typ
- časopisecké články MeSH
Multifunctional mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) is a potential drug target for the treatment of various pathologies. The most discussed is the pathology associated with Alzheimer's disease (AD), where 17β-HSD10 overexpression and its interaction with amyloid-β peptide contribute to mitochondrial dysfunction and neuronal stress. In this work, a series of new benzothiazole-derived 17β-HSD10 inhibitors were designed based on the structure-activity relationship analysis of formerly published inhibitors. A set of enzyme-based and cell-based methods were used to evaluate the inhibitory potency of new compounds, their interaction with the enzyme, and their cytotoxicity. Most compounds exhibited significantly a higher inhibitory potential compared to published benzothiazolyl ureas and good target engagement in a cellular environment accompanied by low cytotoxicity. The best hits displayed mixed-type inhibition with half maximal inhibitory concentration (IC50) values in the nanomolar range for the purified enzyme (3-7, 15) and/or low micromolar IC50 values in the cell-based assay (6, 13-16).
- Publikační typ
- časopisecké články MeSH
Human 17β-hydroxysteroid dehydrogenase type 10 is a multifunctional protein involved in many enzymatic and structural processes within mitochondria. This enzyme was suggested to be involved in several neurological diseases, e.g., mental retardation, Parkinson's disease, or Alzheimer's disease, in which it was shown to interact with the amyloid-beta peptide. We prepared approximately 60 new compounds based on a benzothiazolyl scaffold and evaluated their inhibitory ability and mechanism of action. The most potent inhibitors contained 3-chloro and 4-hydroxy substitution on the phenyl ring moiety, a small substituent at position 6 on the benzothiazole moiety, and the two moieties were connected via a urea linker (4at, 4bb, and 4bg). These compounds exhibited IC50 values of 1-2 μM and showed an uncompetitive mechanism of action with respect to the substrate, acetoacetyl-CoA. These uncompetitive benzothiazolyl inhibitors of 17β-hydroxysteroid dehydrogenase type 10 are promising compounds for potential drugs for neurodegenerative diseases that warrant further research and development.
- Klíčová slova
- 17β-hydroxysteroid dehydrogenase type 10, ABAD, Alzheimer’s disease, benzothiazole, inhibitor, neurodegeneration,
- MeSH
- 3-hydroxyacyl-CoA-dehydrogenasy antagonisté a inhibitory chemie MeSH
- aktivace enzymů MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- benzothiazoly chemie MeSH
- inhibitory enzymů chemie farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- močovina chemie farmakologie MeSH
- molekulární struktura MeSH
- rekombinantní proteiny MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3-hydroxyacyl-CoA-dehydrogenasy MeSH
- benzothiazoly MeSH
- HSD17B10 protein, human MeSH Prohlížeč
- inhibitory enzymů MeSH
- močovina MeSH
- rekombinantní proteiny MeSH