Most cited article - PubMed ID 31397917
Clinical Variability in P102L Gerstmann-Sträussler-Scheinker Syndrome
Gerstmann-Sträussler-Scheinker syndrome (GSS) is a hereditary neurodegenerative disease characterized by extracellular aggregations of pathological prion protein (PrP) forming characteristic plaques. Our study aimed to evaluate the micromorphology and protein composition of these plaques in relation to age, disease duration, and co-expression of other pathogenic proteins related to other neurodegenerations. Hippocampal regions of nine clinically, neuropathologically, and genetically confirmed GSS subjects were investigated using immunohistochemistry and multichannel confocal fluorescent microscopy. Most pathognomic prion protein plaques were small (2-10 µm), condensed, globous, and did not contain any of the other investigated proteinaceous components, particularly dystrophic neurites. Equally rare (in two cases out of nine) were plaques over 50 µm having predominantly fibrillar structure and exhibit the presence of dystrophic neuritic structures; in one case, the plaques also included bulbous dystrophic neurites. Co-expression with hyperphosphorylated protein tau protein or amyloid beta-peptide (Aβ) in GSS PrP plaques is generally a rare observation, even in cases with comorbid neuropathology. The dominant picture of the GSS brain is small, condensed plaques, often multicentric, while presence of dystrophic neuritic changes accumulating hyperphosphorylated protein tau or Aβ in the PrP plaques are rare and, thus, their presence probably constitutes a trivial observation without any relationship to GSS development and progression.
- Keywords
- Gerstmann–Sträussler–Scheinker syndrome, PrP, co-expression, plaques,
- MeSH
- Adult MeSH
- Gerstmann-Straussler-Scheinker Disease * genetics metabolism pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Mutation, Missense * MeSH
- Protein Aggregation, Pathological * genetics metabolism pathology MeSH
- Prion Proteins * genetics metabolism MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Prion Proteins * MeSH
Human prion disorders (transmissible spongiform encephalopathies, TSEs) are unique, progressive, and fatal neurodegenerative diseases caused by aggregation of misfolded prion protein in neuronal tissue. Due to the potential transmission, human TSEs are under active surveillance in a majority of countries; in the Czech Republic data are centralized at the National surveillance center (NRL) which has a clinical and a neuropathological subdivision. The aim of our article is to review current knowledge about human TSEs and summarize the experience of active surveillance of human prion diseases in the Czech Republic during the last 20 years. Possible or probable TSEs undergo a mandatory autopsy using a standardized protocol. From 2001 to 2020, 305 cases of sporadic and genetic TSEs including 8 rare cases of Gerstmann-Sträussler-Scheinker syndrome (GSS) were confirmed. Additionally, in the Czech Republic, brain samples from all corneal donors have been tested by the NRL immunology laboratory to increase the safety of corneal transplants since January 2007. All tested 6590 corneal donor brain tissue samples were negative for prion protein deposits. Moreover, the routine use of diagnostic criteria including biomarkers are robust enough, and not even the COVID-19 pandemic has negatively impacted TSEs surveillance in the Czech Republic.
The possibilities for diagnosing prion diseases have shifted significantly over the last 10 years. The RT-QuIC assay option has been added for neuropsychiatric symptoms, supporting biomarkers and final post-mortem confirmation. Samples of brain homogenates used for final diagnosis, archived for many years, provide the possibility for retrospective studies. We used a second-generation RT-QuIC assay to detect seeding activity in different types of sporadic and genetic prion diseases in archival brain homogenates and post-mortem CSF samples that were 2 to 15 years old. Together, we tested 92 archival brain homogenates: 39 with definite prion disease, 28 with definite other neurological disease, and 25 with no signs of neurological disorders. The sensitivity and specificity of the assay were 97.4% and 100%, respectively. Differences were observed in gCJD E200K, compared to the sporadic CJD group. In 52 post-mortem CSF samples-24 with definite prion disease and 28 controls-we detected the inhibition of seeding reaction due to high protein content. Diluting the samples eliminated such inhibition and led to 95.8% sensitivity and 100% specificity of the assay. In conclusion, we proved the reliability of archived brain homogenates and post-mortem CSF samples for retrospective analysis by RT-QuIC after long-term storage, without changed reactivity.
- Keywords
- CJD, Creutzfeldt-Jakob disease, RT-QuIC assay, archived sample, prion diseases,
- Publication type
- Journal Article MeSH