Nejvíce citovaný článek - PubMed ID 31466357
Amine-coated biodegradable materials based on synthetic polymers have a great potential for tissue remodeling and regeneration because of their excellent processability and bioactivity. In the present study, we have investigated the influence of various chemical compositions of amine plasma polymer (PP) coatings and the influence of the substrate morphology, represented by polystyrene culture dishes and polycaprolactone nanofibers (PCL NFs), on the behavior of vascular smooth muscle cells (VSMCs). Although all amine-PP coatings improved the initial adhesion of VSMCs, 7-day long cultivation revealed a clear preference for the coating containing about 15 at.% of nitrogen (CPA-33). The CPA-33 coating demonstrated the ideal combination of good water stability, a sufficient amine group content, and favorable surface wettability and morphology. The nanostructured morphology of amine-PP-coated PCL NFs successfully slowed the proliferation rate of VSMCs, which is essential in preventing restenosis of vascular replacements in vivo. At the same time, CPA-33-coated PCL NFs supported the continuous proliferation of VSMCs during 7-day long cultivation, with no significant increase in cytokine secretion by RAW 264.7 macrophages. The CPA-33 coating deposited on biodegradable PCL NFs therefore seems to be a promising material for manufacturing small-diameter vascular grafts, which are still lacking on the current market.
- Klíčová slova
- amine plasma polymer, bioactive coating, cell adhesion, cell proliferation, polycaprolactone nanofibers, substrate morphology,
- MeSH
- aminy škodlivé účinky chemie imunologie farmakologie MeSH
- biokompatibilní potahované materiály škodlivé účinky chemie farmakologie MeSH
- buněčná adheze účinky léků imunologie MeSH
- fotoelektronová spektroskopie MeSH
- krevní plazma chemie imunologie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- makrofágy účinky léků metabolismus MeSH
- myocyty hladké svaloviny účinky léků metabolismus MeSH
- myši MeSH
- nanovlákna škodlivé účinky chemie MeSH
- polyestery chemie MeSH
- polymery škodlivé účinky chemie farmakologie MeSH
- povrchové vlastnosti účinky léků MeSH
- proliferace buněk účinky léků MeSH
- RAW 264.7 buňky MeSH
- svaly hladké cévní cytologie účinky léků růst a vývoj MeSH
- tkáňové podpůrné struktury škodlivé účinky chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminy MeSH
- biokompatibilní potahované materiály MeSH
- polycaprolactone MeSH Prohlížeč
- polyestery MeSH
- polymery MeSH
Bone tissue is the second tissue to be replaced. Annually, over four million surgical treatments are performed. Tissue engineering constitutes an alternative to autologous grafts. Its application requires three-dimensional scaffolds, which mimic human body environment. Bone tissue has a highly organized structure and contains mostly inorganic components. The scaffolds of the latest generation should not only be biocompatible but also promote osteoconduction. Poly (lactic acid) nanofibers are commonly used for this purpose; however, they lack bioactivity and do not provide good cell adhesion. Chitosan is a commonly used biopolymer which positively affects osteoblasts' behavior. The aim of this article was to prepare novel hybrid 3D scaffolds containing nanohydroxyapatite capable of cell-response stimulation. The matrixes were successfully obtained by PLA electrospinning and microwave-assisted chitosan crosslinking, followed by doping with three types of metallic nanoparticles (Au, Pt, and TiO2). The products and semi-components were characterized over their physicochemical properties, such as chemical structure, crystallinity, and swelling degree. Nanoparticles' and ready biomaterials' morphologies were investigated by SEM and TEM methods. Finally, the scaffolds were studied over bioactivity on MG-63 and effect on current-stimulated biomineralization. Obtained results confirmed preparation of tunable biomimicking matrixes which may be used as a promising tool for bone-tissue engineering.
- Klíčová slova
- biotechnology, properties of nanoparticles–reinforced polymers, smart hybrid materials,
- Publikační typ
- časopisecké články MeSH
Burns affect almost half a million of Americans annually. In the case of full-thickness skin injuries, treatment requires a transplant. The development of bioactive materials that promote damaged tissue regeneration constitutes a great alternative to autografts. For this reason, special attention is focused on three-dimensional scaffolds that are non-toxic to skin cells and can mimic the extracellular matrix, which is mainly composed of nanofibrous proteins. Electrospinning, which enables the preparation of nanofibers, is a powerful tool in the field of biomaterials. In this work, novel hybrid poly (lactic acid)/chitosan biomaterials functionalized with three types of nanoparticles (NPs) were successfully developed. ZnO, Fe3O4, and Au NPs were investigated over their morphology by TEM method. The top layer was obtained from PLA nanofibers, while the bottom layer was prepared from acylated chitosan. The layers were studied over their morphology by the SEM method and their chemical structure by FT-IR. To verify their potential in burn wound treatment, the scaffolds' susceptibility to biodegradation as well as moisture permeability were calculated. Also, biomaterials conductivity was determined in terms of electrostimulation. Finally, cytotoxicity tests were carried out by XTT assay and morphology analysis using both fibroblasts cell line and primary cells. The hybrid nanofibrous scaffolds displayed a great potential in tissue engineering.
- Klíčová slova
- biomedical applications, electrospinning, hybrid polymer scaffolds,
- Publikační typ
- časopisecké články MeSH