Most cited article - PubMed ID 31574544
Hydrogen Rich Water Improved Ventilatory, Perceptual and Lactate Responses to Exercise
Initially, molecular hydrogen was considered a physiologically inert and non-functional gas. However, experimental and clinical studies have shown that molecular hydrogen has anti-inflammatory, anti-apoptotic, and strong selective antioxidant effects. This study aimed to evaluate the effects of 60 minutes of molecular hydrogen inhalation on respiratory gas analysis parameters using a randomized, double-blind, placebo-controlled, crossover design. The study was conducted at Faculty of Physical Culture, Palacký University Olomouc from September 2022 to March 2023. Twenty, physically active female participants aged 22.1 ± 1.6 years who inhaled either molecular hydrogen or ambient air through a nasal cannula (300 mL/min) for 60 minutes while resting were included in this study. Metabolic response was measured using indirect calorimetry. Breath-by-breath data were averaged over four 15-minute intervals. Compared with placebo (ambient air), molecular hydrogen inhalation significantly decreased respiratory exchange ratio and ventilation across all intervals. Furthermore, the change in respiratory exchange ratio was negatively correlated with body fat percentage from 30 minutes onwards. In conclusion, 60 minutes of resting molecular hydrogen inhalation significantly increased resting fat oxidation, as evidenced by decreased respiratory exchange ratio, particularly in individuals with higher body fat percentages.
- Keywords
- body fat, fat oxidation, metabolic flexibility, mitochondria respiration, respiratory exchange ratio,
- MeSH
- Administration, Inhalation MeSH
- Adult MeSH
- Double-Blind Method MeSH
- Cross-Over Studies MeSH
- Humans MeSH
- Young Adult MeSH
- Rest * MeSH
- Placebos MeSH
- Hydrogen * administration & dosage pharmacology MeSH
- Healthy Volunteers MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Placebos MeSH
- Hydrogen * MeSH
PURPOSE: This study investigated the effects of acute, pre-exercise, hydrogen rich water (HRW) ingestion on running time to exhaustion at maximal aerobic speed in trained track and field runners. METHODS: Twenty-four, male runners aged 17.5 ± 1.8 years, with body mass index = 21.0 ± 1.3 kg⋅m-2, and maximal oxygen uptake = 55.0 ± 4.6 ml⋅kg-1⋅min-1 (mean ± standard deviation) participated in this randomized, double-blind, placebo-controlled crossover study. All runners ingested 1260 ml of HRW which was divided into four doses and taken at 120 min (420 ml), 60 min (420 ml), 30 min (210 ml), and 10 min (210 ml) prior to exercise. The running protocol consisted of three phases: warm-up performed at 10 km⋅h-1 for 3 min, followed by a transition phase performed at an individually determined speed (10 km⋅h-1 + maximal aerobic speed)/2 for 1 min, and finally the third phase performed at individual maximal aerobic speed until exhaustion. Time to exhaustion, cardiorespiratory variables, and post-exercise blood lactate concentration were measured. RESULTS: When running to exhaustion at maximal aerobic speed, compared with placebo, HRW had no significant effects on the following variables: time to exhaustion (217 ± 49 and 227 ± 53 s, p = 0.20), post-exercise blood lactate concentration (9.9 ± 2.2 and 10.1 ± 2.0 mmol⋅L-1, p = 0.42), maximal heart rate (186 ± 9 and 186 ± 9 beats⋅min-1, p = 0.80), and oxygen uptake (53.1 ± 4.5 and 52.2 ± 4.7 ml⋅kg-1⋅min-1, p = 0.33). No variable assessed as a candidate moderator was significantly correlated with time to exhaustion (Spearman's correlation coefficients ranged from -0.28 to 0.30, all p ≥ 0.16). CONCLUSIONS: Pre-exercise administration of 1260 ml of HRW showed no ergogenic effect on running performance to exhaustion at maximal aerobic speed in trained track and field runners.
- MeSH
- Double-Blind Method MeSH
- Physical Endurance * MeSH
- Cross-Over Studies MeSH
- Lactic Acid MeSH
- Oxygen pharmacology MeSH
- Track and Field * MeSH
- Humans MeSH
- Drinking MeSH
- Oxygen Consumption MeSH
- Hydrogen pharmacology MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Lactic Acid MeSH
- Oxygen MeSH
- Hydrogen MeSH
Molecular hydrogen (H2) is potentially a novel therapeutic gas for acute post-coronavirus disease 2019 (COVID-19) patients because it has antioxidative, anti-inflammatory, anti-apoptosis, and antifatigue properties. The aim of this study was to determine the effect of 14 days of H2 inhalation on the respiratory and physical fitness status of acute post-COVID-19 patients. This randomized, single-blind, placebo-controlled study included 26 males (44 ± 17 years) and 24 females (38 ± 12 years), who performed a 6-min walking test (6 MWT) and pulmonary function test, specifically forced vital capacity (FVC) and expiratory volume in the first second (FEV1). Symptomatic participants were recruited between 21 and 33 days after a positive polymerase chain reaction test. The experiment consisted of H2/placebo inhalation, 2 × 60 min/day for 14 days. Results showed that H2 therapy, compared with placebo, significantly increased 6 MWT distance by 64 ± 39 m, FVC by 0.19 ± 0.24 L, and, in FEV1, by 0.11 ± 0.28 L (all p ≤ 0.025). In conclusion, H2 inhalation had beneficial health effects in terms of improved physical and respiratory function in acute post-COVID-19 patients. Therefore, H2 inhalation may represent a safe, effective approach for accelerating early function restoration in post-COVID-19 patients.
- Keywords
- 6-min walking test, COVID-19, fatigue, health, hydrogen inhalation, oxygen saturation, pulmonary function,
- MeSH
- COVID-19 * MeSH
- Single-Blind Method MeSH
- Humans MeSH
- Respiratory Function Tests MeSH
- SARS-CoV-2 MeSH
- Forced Expiratory Volume MeSH
- Hydrogen therapeutic use MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Hydrogen MeSH
Hydrogen-rich water (HRW) supplementation has been shown to have an antifatigue effect across different modes of exercise. However, its effect on repeated sprint performance is unknown. The aim of this study was to assess the effect of pre-exercise HRW consumption on repeated sprint performance, lactate, and perceptual responses using a repeated sprint protocol. This randomized, double blinded, placebo controlled, crossover study included 16 professional, male soccer players aged 18.8 ± 1.2 years. Athletes performed two indoor tests, particularly 15 × 30 m track sprints interspersed by 20 s of recovery, separated by a 1-week washout period. Sprint time was measured at 15 m and 30 m. Ratings of perceived exertion were assessed immediately after each sprint, and post-exercise blood lactate concentration was measured after the last sprint. There were significantly faster sprint times after HRW consumption compared with placebo at 15 m for the 14th and 15th sprints, representing improvements in time of 3.4% and 2.7%, respectively. Sprint time at 30 m also significantly improved by 1.9% in the HRW group in the last sprint. However, neither lactate concentrations nor ratings of perceived exertion were significantly different between HRW and placebo. Pre-exercise HRW supplementation is associated with an increased ability to reduce fatigue, especially during the later stages of repeated sprint exercise.
- Keywords
- OXOPHOS, exercise, fatigue resistance, field testing, hydrogen-rich water,
- MeSH
- Running * physiology MeSH
- Adult MeSH
- Soccer * physiology MeSH
- Cross-Over Studies MeSH
- Lactic Acid MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Athletic Performance * physiology MeSH
- Hydrogen MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Lactic Acid MeSH
- Hydrogen MeSH