Most cited article - PubMed ID 31776777
Characterization of five CHASE-containing histidine kinase receptors from Populus × canadensis cv. Robusta sensing isoprenoid and aromatic cytokinins
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
- Keywords
- Hulk/Deadpool, aromatic cytokinins, cis-zeatin, cytokinin biosynthesis, cytokinin oxidase/dehydrogenase, cytokinin signalling, cytokinin transport, cytokinins, isopentenyl transferase,
- MeSH
- Arabidopsis metabolism MeSH
- Models, Biological MeSH
- Biological Transport MeSH
- Biological Assay MeSH
- Cytokinins metabolism MeSH
- Plant Physiological Phenomena * MeSH
- Glycosylation MeSH
- Hydrolysis MeSH
- Kinetics MeSH
- Kinetin metabolism MeSH
- Oxidoreductases metabolism MeSH
- Plant Growth Regulators metabolism MeSH
- Plants metabolism MeSH
- Signal Transduction * MeSH
- Protein Binding MeSH
- Zeatin analogs & derivatives MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- cytokinin oxidase MeSH Browser
- Cytokinins MeSH
- dihydrozeatin MeSH Browser
- Kinetin MeSH
- Oxidoreductases MeSH
- Plant Growth Regulators MeSH
- Zeatin MeSH
Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells. Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accumulation in BFA compartments. We provide a revised view on cytokinin signalling and the possibility of multiple sites of perception at PM and ER.
- MeSH
- Arabidopsis cytology genetics metabolism MeSH
- Brefeldin A pharmacology MeSH
- Cell Membrane metabolism MeSH
- Cytokinins chemistry metabolism MeSH
- Endoplasmic Reticulum metabolism MeSH
- Fluorescent Dyes chemistry metabolism MeSH
- Plants, Genetically Modified MeSH
- Meristem cytology metabolism MeSH
- Protein Kinases genetics metabolism MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Receptors, Cell Surface genetics metabolism MeSH
- Recombinant Fusion Proteins genetics metabolism MeSH
- Signal Transduction drug effects MeSH
- Green Fluorescent Proteins genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Brefeldin A MeSH
- Cytokinins MeSH
- Fluorescent Dyes MeSH
- Protein Kinases MeSH
- Arabidopsis Proteins MeSH
- Receptors, Cell Surface MeSH
- Recombinant Fusion Proteins MeSH
- WOL protein, Arabidopsis MeSH Browser
- Green Fluorescent Proteins MeSH