Nejvíce citovaný článek - PubMed ID 31852201
Intra-articular injection of mitomycin C prevents progression of immobilization-induced arthrogenic contracture in the remobilized rat knee
Joint immobilization is frequently administered after fractures and ligament injuries and can cause joint contracture as a side effect. The structures responsible for immobilization-induced joint contracture can be roughly divided into muscular and articular. During remobilization, although myogenic contracture recovers spontaneously, arthrogenic contracture is irreversible or deteriorates further. Immediately after remobilization, an inflammatory response is observed, characterized by joint swelling, deposit formation in the joint space, edema, inflammatory cell infiltration, and the upregulation of genes encoding proinflammatory cytokines in the joint capsule. Subsequently, fibrosis in the joint capsule develops, in parallel with progressing arthrogenic contracture. The triggers of remobilization-induced joint inflammation are not fully understood, but two potential mechanisms are proposed: 1) micro-damage induced by mechanical stress in the joint capsule, and 2) nitric oxide (NO) production via NO synthase 2. Some interventions can modulate remobilization-induced inflammatory and subsequent fibrotic reactions. Anti-inflammatory treatments, such as steroidal anti-inflammatory drugs and low-level laser therapy, can attenuate joint capsule fibrosis and the progression of arthrogenic contracture in remobilized joints. Antiproliferative treatment using the cell-proliferation inhibitor mitomycin C can also attenuate joint capsule fibrosis by inhibiting fibroblast proliferation without suppressing inflammation. Conversely, aggressive exercise during the early remobilization phases is counterproductive, because it facilitates inflammatory and then fibrotic reactions in the joint. However, the adverse effects of aggressive exercise on remobilization-induced inflammation and fibrosis are offset by anti-inflammatory treatment. To prevent the progression of arthrogenic contracture during remobilization, therefore, care should be taken to control inflammatory and fibrotic reactions in the joints.
- MeSH
- antiflogistika farmakologie MeSH
- fibróza MeSH
- kolenní kloub MeSH
- kontraktura * farmakoterapie MeSH
- lidé MeSH
- rozsah kloubních pohybů MeSH
- zánět patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antiflogistika MeSH
Therapeutic approaches to treat joint contracture after anterior cruciate ligament (ACL) reconstruction have not been established. Arthrofibrosis accompanied by joint inflammation following ACL reconstruction is a major cause of arthrogenic contracture. In this study, we examined whether anti-inflammatory treatment using low-level laser therapy (LLLT) can prevent ACL reconstruction-induced arthrogenic contracture. Rats underwent ACL transection and reconstruction surgery in their right knees. Unoperated left knees were used as controls. After surgery, rats were reared with or without daily LLLT (wavelength: 830 nm; power output: 150 mW; power density: 5 W/cm2; for 120 s/day). We assessed the passive extension range of motion (ROM) after myotomy at one and two weeks post-surgery; the reduction in ROM represents the severity of arthrogenic contracture. ROM was markedly decreased by ACL reconstruction at both time points; however, LLLT partially attenuated the decrease in ROM. One week after ACL reconstruction, the gene expression of the proinflammatory cytokine interleukin-1beta in the joint capsule was significantly upregulated, and this upregulation was significantly attenuated by LLLT. Fibrotic changes in the joint capsule, including upregulation of collagen type I and III genes, shortening of the synovium, and thickening were caused by ACL reconstruction and seen at both time points. LLLT attenuated these fibrotic changes as well. Our results indicate that LLLT after ACL reconstruction could attenuate the formation of arthrogenic contracture through inhibition of inflammation and fibrosis in the joint capsule. Thus, LLLT may become a novel therapeutic approach for ACL reconstruction-induced joint contracture.
- MeSH
- fibróza MeSH
- kolenní kloub chirurgie MeSH
- kontraktura * etiologie prevence a kontrola MeSH
- krysa rodu Rattus MeSH
- laserová terapie s nízkou intenzitou světla * škodlivé účinky MeSH
- poranění předního zkříženého vazu * komplikace chirurgie MeSH
- rekonstrukce předního zkříženého vazu * škodlivé účinky MeSH
- rozsah kloubních pohybů MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The effects of exercise on mechanical hyperalgesia, joint contracture, and muscle injury resulting from immobilization are not completely understood. This study aimed to investigate the effects of cyclic stretching on these parameters in a rat model of chronic post-cast pain (CPCP). Seventeen 8-week-old Wistar rats were randomly assigned to (1) control group, (2) immobilization (CPCP) group, or (3) immobilization and stretching exercise (CPCP+STR) group. In the CPCP and CPCP+STR groups, both hindlimbs of each rat were immobilized in full plantar flexion with a plaster cast for a 4-week period. In the CPCP+STR group, cyclic stretching exercise was performed 6 days/week for 2 weeks, beginning immediately after cast removal prior to reloading. Although mechanical hyperalgesia in the plantar skin and calf muscle, ankle joint contracture, and gastrocnemius muscle injury were observed in both immobilized groups, these changes were significantly less severe in the CPCP+STR group than in the CPCP group. These results clearly demonstrate the beneficial effect of cyclic stretching exercises on widespread mechanical hyperalgesia, joint contracture, and muscle injury in a rat model of CPCP.
- MeSH
- chronická bolest etiologie patologie rehabilitace MeSH
- hyperalgezie etiologie patologie rehabilitace MeSH
- imobilizace MeSH
- kondiční příprava zvířat metody MeSH
- kontraktura etiologie patologie rehabilitace MeSH
- kosterní svaly fyziologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- potkani Wistar MeSH
- sádrové obvazy MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH