Nejvíce citovaný článek - PubMed ID 32077245
"Clickable" and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide-Specific Cell Attachment
Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide "click" reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
- Klíčová slova
- RGD peptide, X-ray photoelectron spectroscopy, biomimetic surface, hierarchical bioactive polymer brushes, vascular graft, “click”-chemistry,
- MeSH
- adsorpce MeSH
- aminokyselinové motivy MeSH
- azidy chemie MeSH
- biokompatibilní potahované materiály * MeSH
- biomimetické materiály * MeSH
- buněčná adheze MeSH
- buněčné dělení MeSH
- cévní endotel fyziologie MeSH
- cévní protézy * MeSH
- click chemie MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- imobilizované proteiny MeSH
- křemík MeSH
- krevní plazma MeSH
- krevní proteiny MeSH
- lidé MeSH
- oligopeptidy chemie MeSH
- polyethylentereftaláty chemie MeSH
- polymerizace * MeSH
- povrchové vlastnosti MeSH
- řízená tkáňová regenerace přístrojové vybavení MeSH
- sklo MeSH
- testování materiálů MeSH
- trombóza prevence a kontrola MeSH
- zlato MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- arginyl-glycyl-aspartic acid MeSH Prohlížeč
- azidy MeSH
- biokompatibilní potahované materiály * MeSH
- imobilizované proteiny MeSH
- křemík MeSH
- krevní proteiny MeSH
- oligopeptidy MeSH
- polyethylentereftaláty MeSH
- zlato MeSH
Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.
- Klíčová slova
- antifouling polymer brushes, cell mechanotransduction, cell signaling, functional biointerfaces, surface modification, zwitterionic material,
- MeSH
- akrylamidy chemie MeSH
- biokompatibilní potahované materiály chemie MeSH
- bioznečištění prevence a kontrola MeSH
- buněčný převod mechanických signálů * MeSH
- extracelulární matrix metabolismus MeSH
- lidé MeSH
- mechanický stres MeSH
- nádorové buněčné linie MeSH
- oligopeptidy chemie MeSH
- protoonkogenní proteiny c-yes metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylamidy MeSH
- arginyl-glycyl-aspartic acid MeSH Prohlížeč
- biokompatibilní potahované materiály MeSH
- oligopeptidy MeSH
- protoonkogenní proteiny c-yes MeSH
- YES1 protein, human MeSH Prohlížeč
- zwitterion carboxybetaine acrylamide MeSH Prohlížeč