Nejvíce citovaný článek - PubMed ID 32244706
The Automation Technique Lab-In-Syringe: A Practical Guide
Polymeric nano- and microfibers were tested as potential sorbents for the extraction of five neonicotinoids from natural waters. Nanofibrous mats were prepared from polycaprolactone, polyvinylidene fluoride, polystyrene, polyamide 6, polyacrylonitrile, and polyimide, as well as microfibers of polyethylene, a polycaprolactone nano- and microfiber conjugate, and polycaprolactone microfibers combined with polyvinylidene fluoride nanofibers. Polyimide nanofibers were selected as the most suitable sorbent for these analytes and the matrix. A Lab-In-Syringe system enabled automated preconcentration via online SPE of large sample volumes at low pressure with analyte separation by HPLC. Several mat layers were housed in a solvent filter holder integrated into the injection loop of an HPLC system. After loading 2 mL sample on the sorbent, the mobile phase eluted the retained analytes onto the chromatographic column. Extraction efficiencies of 68.8-83.4% were achieved. Large preconcentration factors ranging from 70 to 82 allowed reaching LOD and LOQ values of 0.4 to 1.7 and 1.2 to 5.5 µg·L-1, respectively. Analyte recoveries from spiked river waters ranged from 53.8% to 113.3% at the 5 µg·L-1 level and from 62.8% to 119.8% at the 20 µg·L-1 level. The developed methodology proved suitable for the determination of thiamethoxam, clothianidin, imidacloprid, and thiacloprid, whereas matrix peak overlapping inhibited quantification of acetamiprid.
- Klíčová slova
- Lab-In-Syringe, membrane preconcentration, nanofibers, neonicotinoids, online SPE,
- Publikační typ
- časopisecké články MeSH
We report on the hyphenation of the modern flow techniques Lab-In-Syringe and Lab-On-Valve for automated sample preparation coupled online with high-performance liquid chromatography. Adopting the bead injection concept on the Lab-On-Valve platform, the on-demand, renewable, solid-phase extraction of five nonsteroidal anti-inflammatory drugs, namely ketoprofen, naproxen, flurbiprofen, diclofenac, and ibuprofen, was carried out as a proof-of-concept. In-syringe mixing of the sample with buffer and standards allowed straightforward pre-load sample modification for the preconcentration of large sample volumes. Packing of ca. 4.4 mg microSPE columns from Oasis HLB® sorbent slurry was performed for each sample analysis using a simple microcolumn adapted to the Lab-On-Valve manifold to achieve low backpressure during loading. Eluted analytes were injected into online coupled HPLC with subsequent separation on a Symmetry C18 column in isocratic mode. The optimized method was highly reproducible, with RSD values of 3.2% to 7.6% on 20 µg L-1 level. Linearity was confirmed up to 200 µg L-1 and LOD values were between 0.06 and 1.98 µg L-1. Recovery factors between 91 and 109% were obtained in the analysis of spiked surface water samples.
- Klíčová slova
- Lab-In-Syringe, Lab-On-Valve, bead injection, high-performance liquid chromatography, nonsteroidal anti-inflammatory drugs, online coupling, water analysis,
- MeSH
- antiflogistika nesteroidní analýza MeSH
- extrakce na pevné fázi * MeSH
- povrchové vlastnosti MeSH
- voda chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- voda MeSH