Most cited article - PubMed ID 32448557
A Perspective on Multi-target Drugs for Alzheimer's Disease
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and behavioral and psychological symptoms of dementia (BPSD). Given that cholinergic neurons are predominantly affected in AD, current treatments primarily aim to enhance cholinergic neurotransmission. However, imbalances in other neurotransmitters, such as γ-aminobutyric acid (GABA), also contribute to AD symptomatology. In the presented research, using a combination of crystallography and computational methods we developed compound 6 as a dual modulator of GABAergic and cholinergic neurotransmission systems. Compound 6 demonstrated inhibition of BuChE (IC50=0.21 μM) and GABA transporter 1 (IC50=10.96 μM) and 3 (IC50=7.76 μM), along with a favorable drug-likeness profile. Subsequent in vivo studies revealed the effectiveness of 6 in enhancing memory retention and alleviating anxiety and depression symptoms in animal models, while also proving safe and bioavailable for oral administration. The innovative multi-target-directed ligand 6 offers a new approach to treating cognitive deficits and BPSD in AD.
- Keywords
- Alzheimer's disease, GABA transporters, butyrylcholinesterase, inhibitors, multitarget drugs,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Alzheimer Disease * drug therapy metabolism MeSH
- Butyrylcholinesterase metabolism MeSH
- Cholinesterase Inhibitors * chemistry pharmacology therapeutic use MeSH
- Fluorenes * chemistry pharmacology therapeutic use MeSH
- gamma-Aminobutyric Acid * metabolism MeSH
- Humans MeSH
- Molecular Structure MeSH
- Mice MeSH
- Synaptic Transmission * drug effects MeSH
- GABA Plasma Membrane Transport Proteins metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors * MeSH
- Fluorenes * MeSH
- gamma-Aminobutyric Acid * MeSH
- GABA Plasma Membrane Transport Proteins MeSH
Alzheimer's disease (AD) is a complex disease with an unknown etiology. Available treatments, limited to cholinesterase inhibitors and N-methyl-d-aspartate receptor (NMDAR) antagonists, provide symptomatic relief only. As single-target therapies have not proven effective, rational specific-targeted combination into a single molecule represents a more promising approach for treating AD, and is expected to yield greater benefits in alleviating symptoms and slowing disease progression. In the present study, we designed, synthesized, and biologically evaluated 24 novel N-methylpropargylamino-quinazoline derivatives. Initially, compounds were thoroughly inspected by in silico techniques determining their oral and CNS availabilities. We tested, in vitro, the compounds' effects on cholinesterases and monoamine oxidase A/B (MAO-A/B), as well as their impacts on NMDAR antagonism, dehydrogenase activity, and glutathione levels. In addition, we inspected selected compounds for their cytotoxicity on undifferentiated and differentiated neuroblastoma SH-SY5Y cells. We collectively highlighted II-6h as the best candidate endowed with a selective MAO-B inhibition profile, NMDAR antagonism, an acceptable cytotoxicity profile, and the potential to permeate through BBB. The structure-guided drug design strategy applied in this study imposed a novel concept for rational drug discovery and enhances our understanding on the development of novel therapeutic agents for treating AD.
- Keywords
- Alzheimer’s disease, N-methyl-d-aspartate receptor, acetylcholinesterase, enzyme inhibition, monoamine oxidase A/B, multi-target directed ligands,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Alzheimer Disease * drug therapy MeSH
- Cholinesterase Inhibitors therapeutic use MeSH
- Monoamine Oxidase Inhibitors therapeutic use MeSH
- Humans MeSH
- Monoamine Oxidase metabolism MeSH
- Neuroblastoma * drug therapy MeSH
- Drug Design MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Monoamine Oxidase Inhibitors MeSH
- Monoamine Oxidase MeSH
As part of our efforts to develop sustainable drugs for Alzheimer's disease (AD), we have been focusing on the inexpensive and largely available cashew nut shell liquid (CNSL) as a starting material for the identification of new acetylcholinesterase (AChE) inhibitors. Herein, we decided to investigate whether cardanol, a phenolic CNSL component, could serve as a scaffold for improved compounds with concomitant anti-amyloid and antioxidant activities. Ten new derivatives, carrying the intact phenolic function and an aminomethyl functionality, were synthesized and first tested for their inhibitory potencies towards AChE and butyrylcholinesterase (BChE). 5 and 11 were found to inhibit human BChE at a single-digit micromolar concentration. Transmission electron microscopy revealed the potential of five derivatives to modulate Aβ aggregation, including 5 and 11. In HORAC assays, 5 and 11 performed similarly to standard antioxidant ferulic acid as hydroxyl scavenging agents. Furthermore, in in vitro studies in neuronal cell cultures, 5 and 11 were found to effectively inhibit reactive oxygen species production at a 10 μM concentration. They also showed a favorable initial ADME/Tox profile. Overall, these results suggest that CNSL is a promising raw material for the development of potential disease-modifying treatments for AD.
- Publication type
- Journal Article MeSH
Alzheimer's disease (AD) is a complex disorder with unknown etiology. Currently, only symptomatic therapy of AD is available, comprising cholinesterase inhibitors and N-methyl-d-aspartate (NMDA) receptor antagonists. Drugs targeting only one pathological condition have generated only limited efficacy. Thus, combining two or more therapeutic interventions into one molecule is believed to provide higher benefit for the treatment of AD. In the presented study, we designed, synthesized, and biologically evaluated 15 novel fluoren-9-amine derivatives. The in silico prediction suggested both the oral availability and permeation through the blood-brain barrier (BBB). An initial assessment of the biological profile included determination of the cholinesterase inhibition and NMDA receptor antagonism at the GluN1/GluN2A and GluN1/GluN2B subunits, along with a low cytotoxicity profile in the CHO-K1 cell line. Interestingly, compounds revealed a selective butyrylcholinesterase (BChE) inhibition pattern with antagonistic activity on the NMDARs. Their interaction with butyrylcholinesterase was elucidated by studying enzyme kinetics for compound 3c in tandem with the in silico docking simulation. The docking study showed the interaction of the tricyclic core of new derivatives with Trp82 within the anionic site of the enzyme in a similar way as the template drug tacrine. From the kinetic analysis, it is apparent that 3c is a competitive inhibitor of BChE.
- Keywords
- Alzheimer’s disease, N-methyl-d-aspartate receptor, acetylcholinesterase, butyrylcholinesterase, fluorene, in silico, in vitro, multi-target directed ligands,
- MeSH
- Alzheimer Disease drug therapy enzymology genetics pathology MeSH
- Butyrylcholinesterase chemistry drug effects genetics MeSH
- CHO Cells MeSH
- Cholinesterase Inhibitors chemistry pharmacology MeSH
- Cricetulus MeSH
- Fluorenes chemistry pharmacology MeSH
- Blood-Brain Barrier drug effects MeSH
- Enzyme Inhibitors pharmacology MeSH
- Humans MeSH
- Computer Simulation MeSH
- Receptors, N-Methyl-D-Aspartate antagonists & inhibitors genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- fluorene MeSH Browser
- Fluorenes MeSH
- Enzyme Inhibitors MeSH
- N-methyl D-aspartate receptor subtype 2A MeSH Browser
- NR2B NMDA receptor MeSH Browser
- Receptors, N-Methyl-D-Aspartate MeSH