Most cited article - PubMed ID 32485964
Cell Distribution within Yeast Colonies and Colony Biofilms: How Structure Develops
The ability of yeast cells to adhere to solid surfaces or even penetrate semi-solid surfaces and form multicellular biofilms are critical factors in infection. This study examines the relationship between cell adhesion capability and the ability to create spatially organized biofilms in selected Saccharomyces cerevisiae strains, including clinical isolates, and five Candida species (C. albicans, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis). We assessed cell adhesion to polystyrene surface in four media varying in source of carbon and other nutrients. Using microscopy of vertical cell arrangement profiles within yeast populations grown at the solid-liquid interface, we evaluated their internal organization to determine whether the populations exhibit typical biofilm characteristics, such as the spatial organization of distinct cell types. Results indicate that well adherent S. cerevisiae strains form spatial biofilms with typical internal organization, highlighting strain-specific responses to media composition and supporting the use of natural S. cerevisiae strains for biofilm research. Among Candida species, biofilm formation did not consistently align with adhesion efficiency to plastic; while C. albicans and C. krusei formed spatially structured biofilms on media where they adhered well, C. tropicalis and C. glabrata exhibited efficient adhesion without biofilm structuring. Interestingly, C. parapsilosis formed a structured biofilm despite minimal adhesion. These findings emphasize the role of media composition, particularly components of yeast extract and defined medium for mammalian cell growth RPMI, which differentially impacted adhesion and biofilm formation in S. cerevisiae and C. albicans.
- Keywords
- Adhesion, Biofilm, Microscopy, Spatial structure, Yeast,
- Publication type
- Journal Article MeSH
Cell death is a natural part of the development of multicellular organisms and is central to their physiological and pathological states. However, the existence of regulated cell death in unicellular microorganisms, including eukaryotic and prokaryotic microbes, has been a topic of debate. One reason for the continued debate is the lack of obvious benefit from cell death in the context of a single cell. However, unicellularity is relative, as most of these microbes dwell in communities of varying complexities, often with complicated spatial organization. In these spatially organized microbial communities, such as yeast and bacterial colonies and biofilms growing on solid surfaces, cells differentiate into specialized types, and the whole community often behaves like a simple multicellular organism. As these communities develop and age, cell death appears to offer benefits to the community as a whole. This review explores the potential roles of cell death in spatially organized communities of yeasts and draws analogies to similar communities of bacteria. The natural dying processes in microbial cell communities are only partially understood and may result from suicidal death genes, (self-)sabotage (without death effectors), or from non-autonomous mechanisms driven by interactions with other differentiated cells. We focus on processes occurring during the stratification of yeast colonies, the formation of the extracellular matrix in biofilms, and discuss potential roles of cell death in shaping the organization, differentiation, and overall physiology of these microbial structures.
- Publication type
- Journal Article MeSH
- Review MeSH
Single-celled yeasts form spatially structured populations - colonies and biofilms, either alone (single-species biofilms) or in cooperation with other microorganisms (mixed-species biofilms). Within populations, yeast cells develop in a coordinated manner, interact with each other and differentiate into specialized cell subpopulations that can better adapt to changing conditions (e.g. by reprogramming metabolism during nutrient deficiency) or protect the overall population from external influences (e.g. via extracellular matrix). Various omics tools together with specialized techniques for separating differentiated cells and in situ microscopy have revealed important processes and cell interactions in these structures, which are summarized here. Nevertheless, current knowledge is still only a small part of the mosaic of complexity and diversity of the multicellular structures that yeasts form in different environments. Future challenges include the use of integrated multi-omics approaches and a greater emphasis on the analysis of differentiated cell subpopulations with specific functions.
- Keywords
- Biofilms, Cell differentiation, Colonies, Multicellular yeast structures, Regulation, Spatial community structure,
- Publication type
- Journal Article MeSH
- Review MeSH