Most cited article - PubMed ID 32591087
Antibiotic administration reduces the rate of intraamniotic inflammation in preterm prelabor rupture of the membranes
Preterm prelabour rupture of membranes (PPROM) complicated by intra-amniotic inflammation (IAI) represents a substantial proportion of preterm birth cases. Currently, IAI is frequently defined as amniotic fluid IL-6 concentration above 2,600 pg/mL. However, the amniotic fluid IL-6 concentration was never correlated with the global response of other proinflammatory proteins to the ongoing IAI. In this cross-sectional study, protein quantification was performed using mass spectrometry (MS) analysis followed by target quantification of selected proinflammatory proteins. Levels of amniotic fluid proteins determined by MS were put into the correlation with IL-6 concentration determined by electrochemiluminescence immunoassay method (ECLIA). In total, 925 proteins were efficiently quantified and differential expression analysis revealed 378 proteins upregulated towards IL-6 concentration above 10,000 pg/mL. Four proteins (LCN2, MMP8, MPO, and S100A12) were selected to verify the achieved results and IL-6 concentration of 10,000 pg/mL was determined as the cut-off value for global IAI response.
- MeSH
- Biomarkers metabolism MeSH
- Chorioamnionitis * metabolism MeSH
- Adult MeSH
- Interleukin-6 metabolism MeSH
- Humans MeSH
- Amniotic Fluid * metabolism MeSH
- Fetal Membranes, Premature Rupture * metabolism pathology MeSH
- S100A12 Protein metabolism MeSH
- Cross-Sectional Studies MeSH
- Pregnancy MeSH
- Inflammation * metabolism MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
- IL6 protein, human MeSH Browser
- Interleukin-6 MeSH
- S100A12 Protein MeSH
INTRODUCTION: This study aimed to identify whether microbial invasion of the amniotic cavity and/or intra-amniotic inflammation in women with late preterm prelabor rupture of membranes (PPROM) was associated with changes in concentrations of soluble fms-like tyrosine kinase-1 (sFlt-1), placental growth factor (PlGF) and its ratio in maternal serum, and whether placental features consistent with maternal vascular malperfusion further affect their concentrations. MATERIAL AND METHODS: This historical study included 154 women with singleton pregnancies complicated by PPROM between gestational ages 34+0 and 36+6 weeks. Transabdominal amniocentesis was performed as part of standard clinical management to evaluate the intra-amniotic environment. Women were categorized into two subgroups based on the presence of microorganisms and/or their nucleic acids in amniotic fluid (determined by culturing and molecular biology method) and intra-amniotic inflammation (by amniotic fluid interleukin-6 concentration evaluation): (1) those with the presence of microorganisms and/or inflammation (at least one present) and (2) those with negative amniotic fluid for infection/inflammation (absence of both). Concentrations of sFlt-1 and PlGF were assessed using the Elecsys® sFlt-1 and Elecsys® PlGF immunoassays and converted into multiples of medians. RESULTS: Women with the presence of microorganisms and/or inflammation in amniotic fluid had lower serum concentrations of sFlt-1 and sFlt-1/PlGF ratios and higher concentrations of PlGF compared with those with negative amniotic fluid. (sFlt-1: presence: median 1.0 multiples of the median (MoM), vs negative: median: 1.5 MoM, P = 0.003; PlGF: presence: median 0.7 MoM, vs negative: median 0.4 MoM, P = 0.02; sFlt-1/PlGF: presence: median 8.9 vs negative 25.0, P = 0.001). Higher serum concentrations of sFlt-1 and sFlt-1/PlGF ratios as well as lower concentrations of PlGF were found in the subsets of women with maternal vascular malperfusion than in those without maternal vascular malperfusion. CONCLUSIONS: Among women experiencing late PPROM, angiogenic imbalance in maternal serum is primarily observed in those without both microbial invasion of the amniotic cavity and intra-amniotic inflammation. Additionally, there is an association between angiogenic imbalance and the presence of maternal vascular malperfusion.
- Keywords
- amniotic fluid, angiogenic factors, inflammation, microorganism, preterm delivery,
- MeSH
- Amniocentesis MeSH
- Biomarkers blood MeSH
- Chorioamnionitis blood MeSH
- Adult MeSH
- Gestational Age MeSH
- Humans MeSH
- Placenta Growth Factor * blood MeSH
- Amniotic Fluid * microbiology metabolism MeSH
- Fetal Membranes, Premature Rupture * blood MeSH
- Vascular Endothelial Growth Factor Receptor-1 * blood MeSH
- Pregnancy MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- FLT1 protein, human MeSH Browser
- PGF protein, human MeSH Browser
Objectives: To develop a rat model of intra-amniotic inflammation, characterized by the concentration of interleukin-6 in the amniotic fluid, induced by an ultrasound-guided transabdominal administration of lipopolysaccharide into individual gestational sacs. Methods: An ultrasound-guided transabdominal intra-amniotic administration of lipopolysaccharide or phosphate-buffered saline (PBS) as control was performed in rats on embryonic day 18. Only accessible gestational sacs with precise recording of their positions were injected. Twenty-four hours later, individual amniotic fluid samples were collected from the gestational sacs of laparotomized animals. The gestational sacs were divided into four subgroups: (i) with lipopolysaccharide: injected gestational sacs from rats undergoing lipopolysaccharide administration; (ii) without lipopolysaccharide: non-injected gestational sacs from rats undergoing lipopolysaccharide administration; (iii) with PBS: injected gestational sacs from rats undergoing PBS administration; and (iv) without PBS: non-injected gestational sacs from rats undergoing PBS administration. The concentration of interleukin-6 in individual amniotic fluid samples was assessed using ELISA. Results: In the group of five animals receiving lipopolysaccharide, 24 (33%) and 48 (77%) gestational sacs were and were not injected, respectively. The amniotic fluid was obtained from 21 (88%) injected and 46 (95%) non-injected sacs. In the control group of five animals receiving phosphate-buffered saline, 28 (35%) and 52 (75%) gestational sacs were and were not injected, respectively. The amniotic fluid was obtained from 18 (64%) injected and 50 (96%) non-injected sacs. No labor occurred, and only one fetal death was observed in a gestational sac injected with lipopolysaccharide. Differences in concentrations of interleukin-6 in the amniotic fluid were found among the subgroups of the gestational sacs (with lipopolysaccharide: median 762 pg/ml; without lipopolysaccharide: median 35.6 pg/ml; with PBS: median 35.6 pg/ml; and without PBS: median 35.6 pg/ml; p < 0.0001). Concentrations of interleukin-6 in the amniotic fluid from the gestational sacs with lipopolysaccharide were significantly higher than those in the three remaining subgroups (p < 0.0001). No differences in concentrations of interleukin-6 in the amniotic fluid were identified between the three remaining subgroups. Conclusion: The ultrasound-guided transabdominal intra-amniotic administration of lipopolysaccharide with a subsequent collection and analysis of amniotic fluid samples is feasible in rats. The intra-amniotic administration of lipopolysaccharide led to the development of intra-amniotic inflammation without leading to fetal mortality or induction of labor.
- Keywords
- amniocentesis, animal model, lipopolysaccharide, minimally invasive, preterm birth, preterm delivery,
- Publication type
- Journal Article MeSH
Objectives: To determine the prevalence and load of Ureaplasma spp. DNA in the cervical fluid of women with singleton pregnancies complicated by preterm prelabor rupture of membranes (PPROM) with respect to intra-amniotic infection, sterile intra-amniotic inflammation, and colonization of the amniotic fluid. Methods: A total of 217 women with PPROM between gestational ages 24 + 0 and 33 + 6 weeks were included in this study. Paired amniotic and cervical fluid samples were collected at the time of admission via transabdominal amniocentesis and using a Dacron polyester swab, respectively. Microbial invasion of the amniotic cavity was diagnosed using a combination of culture and molecular biology methods. Intra-amniotic inflammation was determined based on the concentration of interleukin-6 in the amniotic fluid. Based on the presence or absence of these conditions, the women were stratified into the following subgroups: intra-amniotic infection (with both), sterile intra-amniotic inflammation (with inflammation only), colonization (with microorganisms only), and negative amniotic fluid (without either). The Ureaplasma spp. DNA load in the cervical fluid was assessed using PCR. Results: Ureaplasma spp. DNA in the cervical fluid was found in 61% (133/217) of the women. Women with negative amniotic had similar prevalence of Ureaplasma spp. DNA in cervical fluid (55%) to those with sterile intra-amniotic inflammation (54%) but lower than those with intra-amniotic infection (73%) and colonization (86%; p < 0.0001). Women with negative amniotic fluid had a lower load of Ureaplasma spp. DNA in their cervical fluid (median: 4.7 × 103 copies of DNA/ml) than those with intra-amniotic infection (median: 2.8 × 105 copies DNA/ml), sterile intra-amniotic inflammation (median: 5.3 × 104 copies DNA/ml), and colonization (median: 1.2 × 105 copies DNA/mL; p < 0.0001). Conclusion: In conclusion, in PPROM at <34 weeks, the presence of intra-amniotic infection, sterile intra-amniotic inflammation, or colonization of the amniotic fluid was associated with a higher prevalence and/or load of Ureaplasma spp. DNA in the cervical fluid than the absence of intra-amniotic complications.
- Keywords
- genital mycoplasma, intra-amniotic inflammation, microbial invasion of the amniotic cavity, non-invasive sample, preterm delivery,
- Publication type
- Journal Article MeSH
To determine the main clinical characteristics of preterm prelabor rupture of membranes (PPROM) complicated by colonization of the amniotic cavity (microbial invasion of the amniotic cavity without intra-amniotic inflammation). A total of 302 women with PPROM were included. Transabdominal amniocentesis was performed and amniotic fluid was assessed. Based of microbial invasion of the amniotic cavity and intra-amniotic inflammation (interleukin-6 ≥ 3000 pg/mL), the women were divided into following groups: intra-amniotic infection, sterile intra-amniotic inflammation, colonization of the amniotic cavity, and negative amniotic fluid. Colonization was found in 11% (32/302) of the women. The most common bacteria identified in the amniotic fluid were Ureaplasma spp. with a lower burden than those with intra-amniotic infection (p = 0.03). The intensity of intra-amniotic inflammatory response measured by interleukin-6 was higher in women with colonization than in those with negative amniotic fluid (medians: 961 pg/mL vs. 616 pg/mL; p = 0.04). Women with colonization had higher rates of acute inflammatory placental lesions than those with negative amniotic fluid. In PPROM, colonization, caused mainly by microorganisms from the lower genital tract, might represent an early stage of microbial invasion of the amniotic cavity with a weak intra-amniotic inflammatory response.
- MeSH
- Chorioamnionitis * microbiology MeSH
- Interleukin-6 MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Placenta MeSH
- Amniotic Fluid microbiology MeSH
- Fetal Membranes, Premature Rupture MeSH
- Retrospective Studies MeSH
- Pregnancy MeSH
- Inflammation complications MeSH
- Check Tag
- Humans MeSH
- Infant, Newborn MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Interleukin-6 MeSH