Most cited article - PubMed ID 32618432
Sulphonamidic Groups as Electron-Withdrawing Units in Ureido-Based Anion Receptors: Enhanced Anion Complexation versus Deprotonation
A new method for selective cleavage of sulfonimides into sulfonamides in high yields using a simple electrochemical approach is shown. As revealed by the electrochemical study, the aromatic sulfonimides can be selectively cleaved by electrolysis of the starting compound at a given potential (only -0.9 V vs SCE for the nosyl group). The high chemoselectivity was confirmed by preparative electrolysis, and the results were supported with DFT calculations of a set of substances bearing different sulfonimide functions. Moreover, various experimental setups together with other attempts to simplify the procedure were tested. Finally, the removal of the p-nosyl group from the corresponding sulfonimides proceeds smoothly regardless of the number of nosyl groups and the overall shape of the complex molecule. Thus, the method is interesting for use in the field of multifunctional molecules such as calix[n]arenes.
- Publication type
- Journal Article MeSH
Coupling of electron-deficient urea units with aliphatic chains gives rise to amphiphilic compounds that bind to phosphate and benzoate anions in the hydrogen bonding competitive solvent (DMSO) with KAss = 6 580 M-1 and KAss = 4 100 M-1, respectively. The anchoring of these receptor moieties to the dendritic support does not result in a loss of anion binding and enables new applications. Due to the formation of a microenvironment in the dendrimer, the high selectivity of the prepared compound toward benzoate is maintained even in the presence of aqueous media during extraction experiments. In the presence of binding sites at 5 mM concentration, the amount of benzoate corresponding to the full binding site occupancy is transferred into the chloroform phase from its 10 mM aqueous solution. A thorough investigation of the extraction behavior of the dendrimer reported here, supported by a series of molecular dynamics simulations, provides new insight into the fundamental principles of extraction of inorganic anions by amphiphiles.
- Publication type
- Journal Article MeSH
The repetition of urea-based binding units within the receptor structure does not only lead to monomer properties multiplication. As confirmed by spectroscopic studies, UV-Vis and 1H-NMR in classical or competitive titration mode, the attachment to a carrier allocates the active moieties to mutual positions predetermining the function of the whole receptor molecule. Bivalent receptors form self-aggregates. Dendritic receptors with low dihydrogen phosphate loadings offer a cooperative complexation mode associated with a positive dendritic effect. In higher dihydrogen phosphate concentrations, the dendritic branches act independently and the binding mode changes to 1:1 anion: complexation site. Despite the anchoring, the dendritic receptors retain the superior efficiency and selectivity of a monomer, paving the way to recyclable receptors, desirable for economic and ecological reasons.
- Keywords
- dendrimers, host-guest chemistry, supramolecular chemistry,
- MeSH
- Magnetic Resonance Spectroscopy MeSH
- Urea chemistry MeSH
- Molecular Structure MeSH
- Sulfonamides * chemistry MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Urea MeSH
- Sulfonamides * MeSH